Download Topological insulators driven by electron spin

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Renormalization wikipedia , lookup

Aharonov–Bohm effect wikipedia , lookup

Quantum state wikipedia , lookup

Orchestrated objective reduction wikipedia , lookup

Renormalization group wikipedia , lookup

Instanton wikipedia , lookup

Quantum field theory wikipedia , lookup

Wave–particle duality wikipedia , lookup

Tight binding wikipedia , lookup

Quantum group wikipedia , lookup

EPR paradox wikipedia , lookup

Atomic theory wikipedia , lookup

Atomic orbital wikipedia , lookup

Hydrogen atom wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Bohr model wikipedia , lookup

Hidden variable theory wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

Quantum chromodynamics wikipedia , lookup

Molecular Hamiltonian wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Introduction to gauge theory wikipedia , lookup

Electron configuration wikipedia , lookup

Ferromagnetism wikipedia , lookup

Canonical quantization wikipedia , lookup

Scalar field theory wikipedia , lookup

History of quantum field theory wikipedia , lookup

Low-energy electron diffraction wikipedia , lookup

T-symmetry wikipedia , lookup

Topological quantum field theory wikipedia , lookup

Transcript
Topological insulators driven by electron spin
Maxim Dzero
Kent State University (USA)
and
MPI-PKS, Dresden (Germany)
Idea •  superfluid 3He: B-phase G. E. Volovik (2010)!
H=
✓
⇠p ˆ 0
~ (p) · ~
~ (p) · ~
⇠p ˆ 0
◆
Idea •  Spin Hall effect (2D) A. Bernevig, T. Hughes & S.-C. Zhang, Science 314, 1757 (2006)
Jan Werner and Fakher F. Assaad, PRB 88, 035113 (2013)
M. Konig et al. Science 318, 766 (2007)
Minimal model(s) for topological insulators Ø  Special case will be discussed:
Minimal model(s) for topological insulators •  Anderson lattice model: U=0 Ø  basis
Philip W. Anderson
Ø  Hamiltonian (2D)
electrons holes c-f hybridization: Equivalent to Bernevig-Hughes-Zhang (BHZ) model Finite-U: local moment formation
P. W. Anderson, Phys. Rev 124, 41, (1961) Philip W. Anderson
Ø  local d- or f-electron resonance splits to form a local moment
Heavy Fermion Primer: Kondo impurity
Ce or Sm impurity
total angular
momentum J=5/2
Electron sea
χ
1
TK
Pauli
χ ∼ 1/T
2J+1
(4f,5f):
basic!by!
Spin is
screened
fabric of heavy
!
conduction
electrons!
electron physics !
Curie
TK
Kondo Temperature
T
Heavy Fermion Primer
Ø  coherent heavy fermions!
Ø  insulator!
Kondo lattice!
How do we know if an insulator is topological? even and odd !
parity bands:!
d
2f 0
:ν=0
Band inversion near X
+1
1 1
d f :ν=1
-1
+1
Γ
X
Γ
For strong TI one needs an odd number of band inversions!
Topological insulator: Z2 invariant Ø  “Bulk + boundary” correspondence
M. Z. Hasan & C. L. Kane, RMP 82, 3045 (2010)!
Two lines out of each Kramers point either connect with the same Kramers point (even number of nodes) or different Kramers points (odd number of nodes)
f-orbital insulators: Anderson lattice model
conduction electrons
(s,p,d orbitals)
f-electrons
2J+1
tetragonal crystal field 2J+1
cubic crystal field f-orbital insulators: Anderson lattice model
conduction electrons
(s,p,d orbitals)
f-electrons
Non-local hybridization
•  hybridization: matrix element odd functions of k
Φ† (k̂)
Φ(k̂)
kσ
Γ6 α
kσ
Strong spin-orbit coupling is
encoded in hybridization Interacting electrons: Kondo insulators
•  Anderson model: infinite-U limit Projection (slave-boson) operators:
Constraint:
•  infinite-U limit: hamiltonian mean-field approximation:
f2
f0
f1
Kondo insulators: mean-field theory
•  self-consistency equations: 0.4
renormalized
position of the
f-level
0.05
/
f0
f0
f0
f
0.3
0.1
f0
0
a
•  mean-field Hamiltonian: !
"
†
ξk 1
Ṽ ΦΓk
Hmf (k) =
Ṽ ΦΓk
εf 1
Vdf = 0.55
Vdf = 0.65
Vdf = 0.75
0.2
0.01
0.02
0.03
0.1
0.02
0.04
0.06
T/
f0
0.08
0.1
0.12
Kondo insulators: mean-field theory
•  mean-field Hamiltonian: !
"
†
ξk 1
Ṽ ΦΓk
Hmf (k) =
Ṽ ΦΓk
εf 1
renormalized
position of the
f-level
ü  Hmf (k)
= P Hmf (−k)P −1
L. Fu & C. Kane, PRB 76, 045302 (2007)!
•  parity P =
!
1
0
•  time-reversal T =
T
ü  [Hmf (k)]
0
−1
!
"
iσy
0
0
iσy
= T Hmf (−k)T −1
P-inversion odd form factor vanishes @ high symmetry points of
the Brillouin zone
1
1
Hmf (km ) = (ξkm + εf )1 + (ξkm − εf )P
2
2
"
Tetragonal Topological Kondo Insulators Z2 invariants:
(ν0 ; ν1 , ν2 , ν3 )
“strong”: (−1)
ν0
8
!
=
δ(Γm ) = sign(ξkm − εf )
!
3 “weak”: (−1)
=
νj
δm = ±1
δm = ±1
km ∈Pj
m=1
tetragonal symmetry: Kramers doublet
+
+
kz
+
ν = (0; 000)
+
kx
!"#
#')("+
'(*(%(+!,&%
!"#$%&'()
WTI
67&8
'(*(%(+!,&%
!"#$%&'()
STI
#')("+
'(*(%(+!,&%
BI
!"#$%&'()
kz
+
+
+
+ ky
kx
1231 4!5
!$#
+
-./.0
1931:4!5
+
ν = (0;k111)
y
ν = (1; 111)ky
+
0.58 kz
+
kx
1
0.87 231
$#
1 4!5
"#
!!
nf
Strong mixedjour-ref:
valence
topological
insulator! Phys.favors
Rev. Lett.strong
104, 106408
(2010)
Strong Topological Kondo Insulators BI
STI
WTI
ν = (0; 000)
ν = (1; 111)
ν = (0; 111)
0.58 0.87 1 nf
Q: What factors are important for extending strong topological insulating state to the local moment regime (nf ≈ 1)? A: Degeneracy = high symmetry (cubic!) M. Dzero, Europhys. Jour. B 85, 297 (2012)!
Cubic Topological Kondo Insulators Cubic symmetry (quartet)!
T. Takimoto, Jour. Phys. Soc. Jpn. 80, 123710 (2011)!
V. Alexandrov, M. Dzero, P. Coleman, Phys. Rev. Lett. 111, 206403 (2013)!
Antonov,Harmon,Yaresko, PRB (2006)
4d 5f !
!
V. Alexandrov, M. Dzero, P. Coleman, Phys.
3
5 Rev. Lett. 111, 206403
1 (2013)!
|Γ8(1) ⟩ = ±
6
| ± 5/2⟩ ±
6
|∓
2
⟩
± 1/2⟩
Bands must invert either |Γ
@8(2)
X ⟩or=M±|high
symmetry points Cubic Topological Kondo Insulators Cubic symmetry (quartet)!
4d 5f !
|Γ8(1) ⟩ = ±
5
| ± 5/2⟩ ±
6
!
3
1
|∓ ⟩
6
2
|Γ8(2) ⟩ = ±| ± 1/2⟩
BI
STI
ν = (0; 000)
ν = (1; 000)
0.56 1 nf
V. Alexandrov, M. Dzero, P. Coleman, Phys. Rev. Lett. 111, 206403 (2013))!
Cubic symmetry protects strong topological insulator! Cubic Topological Kondo Insulators: surface states •  Bulk Hamiltonian: Assumption: boundary has little effect on the bulk parameters,
i.e. mean-field theory in the bulk still holds with open boundaries
Cubic Topological Kondo Insulators: surface states •  effective surface Hamiltonian: ky
Conduction Band
"
Y
X
E
Γ
E
X
"
X
"
!
Γ
Valence Band
Ø  Fermi velocities are small: surface electrons are heavy "
Y
"
X
kx
“The world of imagination is boundless. The world of reality has its limits.”
J. J. Rousseau
Quest for ideal topological insulators Ø  complex materials with d- & f-orbitals
3d & 4d-orbitals
5d-orbitals
4f-orbitals
U
αSO
5f-orbitals
U
αSO
αSO
U
U
∆CF
αSO
∆CF
∆CF
∆CF
Quest for ideal topological insulators Ø  complex materials with d- & f-orbitals
Ø  candidates for f-orbital topological insulators
FeSb2, SmB6, YbB12, YbB6 & Ce3Bi4Pt3 Semiconductors with f-electrons Ø  canonical examples: SmB6 & YbB12
Ce3Bi4Pt3 exponential
growth M. Bat’kova et. al, Physica B 378-380, 618 (2006)!
Conductivity remains finite! P. Canfield et. al, (2003)!
Mott’s Hybridization picture N. Mott, Phil. Mag. 30, 403 (1974)!
Formation of heavy-fermion insulator!
nc+nf=2×integer
Ø  Focus of this talk: SmB6
J. W. Allen, B. Batlogg and P. Wachter, Phys. Rev. B 20, 4807(1979). SmB6: potential candidate for correlated TI SmB6: experiments Q: Can we establish that SmB6 hosts
helical surface states with Dirac spectrum
while relying on experimental data only? (1) transport is limited to the surface
(2) time-reversal symmetry breaking leads to localization
(3) strong spin-orbit coupling = helicity (4) Dirac spectrum Ø  @ T < 5K transport comes from the surface ONLY!
Ø  Idea: Ohm’s law
in ideal topo insultor
resistivity is independent
of sample’s thickness:
surface transport
Ø  Resistivity ratio
D. J. Kim, J. Xia & Z. Fisk, Nat. Comm. (2014)!
SmB6: transport experiments Ø  Non-magnetic ions (Y) on the surface: time-reversal symmetry is preserved
X e e No backscattering
Ø  Magnetic ions (Gd) on the surface: time-reversal symmetry is broken
e e Localization
Kim, Xia & Fisk, arXiv:1307.0448
Quantum correction to conductivity (2D) Ø  incoming wave k is split into two complimentary waves [G. Bergmann (1975)] !
k3
waves propagate independently
and interfere in the final state -k k2
k1
k
k
k01
k02
k03
Interference correction to conductance:
✓
◆
2
R
e
⌧ (T )
G=
=
log
2
2
R
2⇡ ~
⌧tr
[E. Abrahams et al. (1979); L. P. Gor’kov et al (1979)] !
p
Inelastic scattering time
⌧ (T ) ⇠ T
Weak localizaGon Quantum correction to conductivity (2D) Ø  quantum interference in topological insulators
Electron spin rotates
adiabatically by ⇡ or ⇡
In topological insulators two waves
always interfere destructively:
weak anti-localization
[Qi & Zhang (2010)] !
G
<0
T
Quantum correction to conductivity (2D) ~
B
Ø  weak anti-localization (WAL) in a perpendicular magnetic field.
0
2
Interference correction in a field is negative: WAL
↵>0
α = 0.42
α = 0.47
α = 0.49
-1
δσ(B)(e /h)
Hikami-Larkin-Nagaoka formula
e2
G(B) = ↵ 2 F (B)
2⇡ ~
!
!
2
4eBL
1
~c
F (B) =
+
+ ln
2 4eBL2
~c
I
-2
-3
-4
-0.4
-0.2
0
B/B0 x 10
-3
0.2
[MD et al. (2015)]!
No effect in a parallel field 0.4
SmB6: transport experiments Ø  weak anti-localization (WAL) in SmB6
k3
k2
k1
k
k
k01
k02
k03
*diffusion (classical) conductivity is field-independent
S. Thomas et al. arXiv:1307.4133
SmB6: quantum oscillations experiments Idea: zero-energy Landau level exists for Dirac electrons: Experimental consequence: shift in Landau index n must be observed – only
E0=0 contributes at
infinite magnetic
field!
Ø  very light effective
mass: 0.07-0.1me
Strong surface potential! G. Li et al. (Li Lu group Ann Arbor) Science (2015)
SmB6: quantum oscillations experiments … BUT
Ø  Key results:
•  Samples are bulk
insulators
•  Rapid quantum
oscillations
corresponding to
50% the volume of
the BZ
•  Large mean-free
path (~ few microns)
Contradicts earlier quantum oscillation experiments
(Science’14)! Collaborators:
Kai Sun, U. Michigan Piers Coleman, Rutgers U.
Victor Galitski, U. of Maryland
Victor A. Victor G. Bitan Roy, U. of Maryland
Jay Deep Sau, U. of Maryland
Maxim Vavilov, U. of Wisconsin
Victor Alexandrov, Rutgers U.
Kostya Kechedzhi, NASA-Ames
Jay Deep Piers Kai Conclusion & open questions
Ø  Role of correlations?!
•  Many-body instabilities on the surface of TKI driven by both long-range !
Coulomb and short range interaction.!
•  Why all Kondo insulators have cubic symmetry?!
[Kondo semimetals have tetragonal symmetry] •  effect magnetic vs. non-magnetic doping on !
the magnitude of surface conductivity •  surface conductance & insulating bulk below 5K!
•  quantum oscillations experiments confirm Dirac!
Dirac spectrum of surface electrons!
•  weak anti-localization: strong SO coupling SmB6 is a correlated
topological insulator
What makes topological Kondo insulators special?
Q: Are topological Kondo insulators adiabatically connected to topological band insulators? A: NO!
Gap closes as the strength of U gradually increases Jan Werner and Fakher F. Assaad, PRB 88, 035113 (2013)
Mott’s Hybridization picture N. Mott, Phil. Mag. 30, 403 (1974)!
Formation of Heavy f-bands: electrons |kσ⟩ and
localized f doublets hybridize, possibly due to Kondo
effect!
Mo(, 1973 H = (|kσ⟩Vσα (k)⟨α| + h.c.)
|α⟩ ≡ |±⟩
Mean-field theory for SmB6: is N=1/4 small enough?
•  integrated spectral weight of the gap: T-dependence •  full insulating gap: dependence on
pressure Derr et al. PRB 77, 193107 (2008)!
0.4
0.1
f0
/
0.05
f
f0
f0
f0
0
a
0.3
Vdf = 0.55
Vdf = 0.65
Vdf = 0.75
0.2
Nyhus, Cooper, Fisk, Sarrao, !
PRB 55, 12488 (1997)!
0.01
0.02
0.03
0.1
0.02
0.04
0.06
T/
0.08
0.1
0.12
f0
Mean-field-like onset of the insulating gap!