Download For a pdf file

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Abuse of notation wikipedia , lookup

Location arithmetic wikipedia , lookup

Wiles's proof of Fermat's Last Theorem wikipedia , lookup

Infinitesimal wikipedia , lookup

Theorem wikipedia , lookup

List of prime numbers wikipedia , lookup

Georg Cantor's first set theory article wikipedia , lookup

Arithmetic wikipedia , lookup

Large numbers wikipedia , lookup

Factorization of polynomials over finite fields wikipedia , lookup

Real number wikipedia , lookup

Quadratic reciprocity wikipedia , lookup

Fermat's Last Theorem wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Collatz conjecture wikipedia , lookup

Addition wikipedia , lookup

Elementary mathematics wikipedia , lookup

Proofs of Fermat's little theorem wikipedia , lookup

Transcript
CS 171
Lecture Outline
March 31, 2010
Example 1.
Prove that, for all real numbers x and all integers m,
⌊x + m⌋ = ⌊x⌋ + m
Solution.
Then,
Let x = y +ǫ, where y is the largest integer with value at most x and 0 ≤ ǫ < 1.
x+m = y+ǫ+m
⌊x + m⌋ = ⌊y + m + ǫ⌋
= y+m
= ⌊x⌋ + m
Example 2. Prove that if x and y are integers where x + y is even, then x and y are both
odd or both even.
Solution. To prove the above claim we will prove its contrapositive which is “if exactly
one of x or y is even then x + y is odd”. Without loss of generality, for some integers k and
l, let x = 2k be even and y = 2l + 1 be odd. Then,
x + y = 2k + 2l + 1
= 2(k + l) + 1
Since k and l are integers so is k + l and 2(k + l) is even and hence x + y is odd.
Example 3.
Prove that the product of two odd numbers is an odd number.
Solution. Let x and y be particular but arbitrarily chosen odd numbers. Then, x = 2k+1
and y = 2l + 1, for some integers k and l. We have
x · y = (2k + 1) · (2l + 1) = 4kl + 2(k + l) + 1 = 2(2kl + k + l) + 1
Let p = 2kl + k + l. Since k and l are integers, p is an integer and x · y = 2p + 1 is odd.
Example 4.
Prove that
√
2 is irrational.
2
Lecture Outline
March 31, 2010
√
Solution. For the purpose of contradiction, assume that 2 be a rational number. Then
there are numbers a and b with no common factors such that
√
a
2=
b
Squaring both sides of the above equation gives
a2
b2
= 2b2
2 =
a2
(1)
From (1) we conclude that a2 is even. This fact combined with the result of Example 1
implies that a is even. Then, for some integer k, let
a = 2k
(2)
Combining (1) and (2) we get
4k2 = 2b2
2k2 = b2
The above equation implies that b2 is even and hence b is even. Since we know a is even
this means that a and b have 2 as a common factor which contradicts the assumption that
a and b have no common factors.
√
We will now give a very elegant proof for the fact that “ 2 is irrational” using the unique
factorization theorem which is also called the fundamental theorem of arithmetic.
The unique factorization theorem states that every positive number can be uniquely represented as a product of primes. More formally, it can be stated as follows.
Given any integer n > 1, there exist a positive integer k, distinct prime numbers
p1 , p2 , . . . , pk , and positive integers e1 , e2 , . . . , ek such that
n = pe11 pe22 pe33 · · · pekk
and any other expression of n as a product of primes is identical to this except,
perhaps, for the order in which the factors are written.
Example 5.
Prove that
√
2 is irrational using the unique factorization theorem.
Solution. Assume for the purpose of contradiction that
numbers a and b (b 6= 0) such that
√
a
2=
b
√
2 is rational. Then there are
March 31, 2010
3
Lecture Outline
Squaring both sides of the above equation gives
a2
b2
= 2b2
2 =
a2
Let S(m) be the sum of the number of times each prime factor occurs in the unique
factorization of m. Note that S(a2 ) and S(b2 ) is even. Why? Because the number of times
that each prime factor appears in the prime factorization of a2 and b2 is exactly twice the
number of times that it appears in the prime factorization of a and b. Then, S(2b2 ) must
be odd. This is a contradiction as S(a2 ) is even and the prime factorization of a positive
integer is unique.
Prove or disprove that the sum of two irrational numbers is irrational.
Example 6.
Solution.
The above statement is false. Consider the two irrational numbers,
√
− 2. Their sum is 0 = 0/1, a rational number.
2 and
Show that there exist irrational numbers x and y such that xy is rational.
Example 7.
Solution.
√
We know that
√
2 is an irrational number. Consider
√
√
2
2
.
√ √2
Case I: 2 is rational.
√
In this case we are done by setting x = y = 2.
√
√
2
is irrational.
√ √ 2
√ √2
√
√ 2
√
In this case, let x = 2 and let y = 2. Then, xy =
2
= ( 2)2 = 2, which is
Case II:
2
an integer and hence rational.