Download Feedback Linearized Model of DC Motor using Differential Geometry

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Control theory wikipedia , lookup

Generalized linear model wikipedia , lookup

Renormalization group wikipedia , lookup

Inverse problem wikipedia , lookup

Routhian mechanics wikipedia , lookup

Perceptual control theory wikipedia , lookup

Mathematical physics wikipedia , lookup

Scalar field theory wikipedia , lookup

Computational fluid dynamics wikipedia , lookup

Mathematical descriptions of the electromagnetic field wikipedia , lookup

Computational electromagnetics wikipedia , lookup

Transcript
International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 5 Issue 1, May-2016
Feedback Linearized Model of DC Motor using
Differential Geometry
Abhishek Bansal
M.S- Mathematics, M.Tech.(P) โ€“Electrical Engg.(Power System & Control Engg.), Delhi, India
ABSTRACT
This research paper discusses the existing technique of obtaining an exact feedback linearization mathematical
model of non linear model of a DC motor using differential geometry approach. The singularly perturbed
system, input-state linearization and the input-output linearization has also been developed along with these
tools and the results of geometric approach are compared and found similar. In this paper, all equations are
developed for DC motor which is field controlled rather than armature controlled.
Keywords: Lyapunov stability, Lie derivative, DC motor, feedback, differential geometry, linearization,
perturbation,field control.
1.
INTRODUCTION
A DC motor is a DC machine which converts DC (Direct Current) electrical power into mechanical power.
Figure 1. A DC machine
A DC motor contains a current carrying armature which is connected to the supply end through commutator segments
and brushes and placed within the poles of electromagnet. Fig. 1 shows the basic part of a DC machine, and the field
windings which are the windings (i.e. many turns of a conductor) wound round the pole core and the current passing
through this conductor creates electromagnet. DC motors can be either shunt wound or series wound or a combination
of both known as compound DC motor. The speed of these DC motors can be controlled by either armature control
method or field control method.
The field controlled method affects the flux per pole. In the field control of DC series motor, either field diverter or
tapper field method is used ,whereas in shunt and compound DC motors, generally field rheostat control method is
employed. This paper is not of the speed controller designing but of the linearized mathematical modeling of a nonlinear model.
In the field controlled, let the control input is the voltage of the field circuit, ๐œ๐‘“ , then we have the following set of
equations:
๐‘‘๐‘–
Field circuit Equation : ๐œ๐‘“ = ๐‘…๐‘“ ๐‘–๐‘“ + ๐ฟ๐‘“ ๐‘“
, where ๐œ๐‘“ is the voltage of the field circuit,๐‘…๐‘“ is the resistance of the
dx
field circuit, ๐‘–๐‘“ is the current of the field circuit, ๐ฟ๐‘“ is the inductance of the field circuit.
Let the time constant of the field circuit, ๐‘‡๐‘“ = ๐ฟ๐‘“ โ„๐‘…๐‘“
Page | 1
International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 5 Issue 1, May-2016
๐‘‘๐‘–
Armature circuit Equation : ๐œ๐‘Ž = ๐‘1 ๐‘–๐‘“ ๐œ” + ๐ฟ๐‘Ž ๐‘Ž + ๐‘…๐‘Ž ๐‘–๐‘Ž
,where ๐œ๐‘Ž is the voltage of the armature circuit,๐‘…๐‘Ž is
dx
the resistance of the armature circuit,๐‘–๐‘Ž is the current of the armature circuit,๐ฟ๐‘Ž is the inductance of the armature
circuit, ๐‘1 ๐‘–๐‘“ ๐œ” is the back e.m.f. induced in the armature circuit.
Let the time constant of the armature circuit, ๐‘‡๐‘Ž = ๐ฟ๐‘Ž โ„๐‘…๐‘Ž
๐‘‘๐œ”
Torque Equation for the shaft: ๐ฝ
= ๐‘2 ๐‘–๐‘“ ๐‘–๐‘Ž โˆ’ ๐‘3 ๐œ” ,where ๐ฝ is the rotor inertia, ๐‘3 is the damping inertia and
dx
๐‘2 ๐‘–๐‘“ ๐‘–๐‘Ž is the torque produced by the interaction of the armature current with the field circuit flux.
Let ๐œ๐‘Ž , ๐œ๐‘“ be constant such that ๐œ๐‘Ž = ๐‘‰๐‘Ž and ๐œ๐‘“ = ๐‘ˆ.
A singularly perturbed system can be modeled if we assume the voltages of the armature circuit and the field circuit be
constant and choose (๐ผ๐‘“ , ๐ผ๐‘Ž , ๐›บ)as a nominal operating point, thusthe system has a unique equilibrium point at
๐ผ๐‘“ =
๐‘ˆ
๐‘…๐‘“
, ๐ผ๐‘Ž =
๐‘3 ๐‘‰๐‘Ž
๐‘3 ๐‘…๐‘Ž + ๐‘1 ๐‘2 ๐‘ˆ 2 โ„๐‘…๐‘“2
, ๐›บ =
๐‘2 ๐‘‰๐‘Ž ๐‘ˆ โ„๐‘…๐‘“
๐‘3 ๐‘…๐‘Ž + ๐‘1 ๐‘2 ๐‘ˆ 2 โ„๐‘…๐‘“2
Now,let the state equations have discontinuous dependence on a small perturbation parameter๐œ€and as ๐‘‡๐‘“ โ‰ซ ๐‘‡๐‘Ž ,the
above system can be modeled as a singularly perturbed system with slow variables (๐‘–๐‘“ and๐›บ) and fast
variables(๐‘–๐‘Ž ),which can written as
๐‘ฅห™1 = โˆ’๐‘ฅ1 + ๐‘ข ; ๐‘ฅห™2 = ๐‘Ž(๐‘ฅ1 ๐‘ง โˆ’ ๐‘ฅ2 ) ; ๐œ€ ๐‘งห™ = โˆ’๐‘ง โˆ’ ๐‘๐‘ฅ1 ๐‘ฅ2 + ๐‘
where, ๐‘ฅ1 = ๐‘–๐‘“ โ„๐ผ๐‘“ ; ๐‘ฅ2 = ๐œ” โ„๐›บ ; ๐‘ง = ๐‘–๐‘Ž โ„๐ผ๐‘Ž ; ๐‘ข = ๐œ๐‘“ โ„๐‘ˆ ; ๐œ€ = ๐‘‡๐‘Ž โ„๐‘‡๐‘“ ; ๐‘ก โ€ฒ = ๐‘กโ„๐‘‡๐‘“ ; ๐‘Ž = ๐ฟ๐‘“ ๐‘3 โ„๐‘…๐‘“ ๐ฝ ;
๐‘ = ๐‘1 ๐‘2 ๐‘ˆ 2 โ„๐‘3 ๐‘…๐‘Ž ๐‘…๐‘“2 ; ๐‘ = ๐‘‰๐‘Ž โ„๐ผ๐‘Ž ๐‘…๐‘Ž
Now, suppose the field circuit would have been driven by a current source ,then the control input would have been the
field current instead field voltage of the field circuit. In this case, this system can be modeled, if the domain of
operation is restricted to ๐‘ฅ1 > ๐œƒ3 โ„ 2๐œƒ1 ,as :
๐‘ฅห™1 = โˆ’๐œƒ1 ๐‘ฅ1 โˆ’ ๐œƒ2 ๐‘ฅ2 ๐‘ข + ๐œƒ3 ; ๐‘ฅห™2 = โˆ’๐œƒ4 ๐‘ฅ2 โˆ’ ๐œƒ5 ๐‘ฅ1 ๐‘ข ; ๐‘ฆ = ๐‘ฅ2
where,๐‘ฅ1 is the armature current ; ๐‘ฅ2 is the speed; ๐‘ข is the field current ;๐œƒ1, ๐œƒ2, ๐œƒ3, ๐œƒ4, ๐œƒ5 are positive constants
๐‘ฆ๐‘…2 < (๐œƒ32 ๐œƒ5 ) โ„ (4 ๐œƒ1, ๐œƒ2, ๐œƒ4 )
2. FEEDBACK LINEARIZATION CONCEPT USING DIFFERENTIAL GEOMETRY APPROACH
Consider a MIMO (multiple-input,-output) system involving๐‘›integrators having ๐‘Ÿ inputs ๐‘ข1 (๐‘ก), ๐‘ข2 (๐‘ก), ๐‘ข3 (๐‘ก), . . . , ๐‘ข๐‘Ÿ (๐‘ก);
๐‘š outputs ๐‘ฆ1 (๐‘ก), ๐‘ฆ2 (๐‘ก), . . . , ๐‘ฆ๐‘š (๐‘ก) and the outputs of these integrators are defined as state variables ๐‘ฅ1 (๐‘ก), ๐‘ฅ2 (๐‘ก), . ..
, ๐‘ฅ๐‘› (๐‘ก). Then, we get state-space equations defined as
System State Equation : ๐‘ฅห™ = ๐‘“(๐‘ฅ, ๐‘ข, ๐‘ก)
(2.1)
and
Output Equation : ๐‘ฆ = ๐‘”(๐‘ฅ, ๐‘ข, ๐‘ก).
(2.2)
Now if the state equation (2.1) is represented without inputs ๐‘ข, it is called unforced state equation ,written as
๐‘ฅห™ = ๐‘“(๐‘ฅ, ๐‘ก);
(2.3)
where now input can either be zero or input could be specified as a function of time or a given feedback function of the
state.
And if the equation (2.3) is invariant of time ๐‘ก, it makes the system an autonomous system, written as
๐‘ฅห™ = ๐‘“(๐‘ฅ)
(2.4)
where,๐‘“ โˆถ ๐ท โ†’ ๐‘…๐‘› is a locally Lipchitz map from a domain ๐ท โŠ‚ ๐‘…๐‘› into ๐‘…๐‘› .
A function ๐‘“ is said to satisfy a Lipchitz condition of order ๐›ผ at ๐‘ if there exists a positive number ๐‘€and a 1-ball ๐ต(๐‘)
such that | ๐‘“(๐‘ฅ) โˆ’ ๐‘“(๐‘) | < ๐‘€|๐‘ฅ โˆ’ ๐‘|๐›ผ , whenever ๐‘ฅ โˆˆ ๐ต(๐‘), ๐‘ฅ โ‰  ๐‘.
And ๐‘“(๐‘ฅ) will be 'locally Lipchitz' on open and connected set,if each point of ๐ท has a neighborhood ๐ท0 such that
๐‘“satisfies the Lipchitz condition for all points in ๐ท0 with some Lipchitz constant ๐ฟ0.
Let ๐‘ฅ = 0 be the equilibrium point for (2.4) and let n-dimensional Euclidean space is denoted by ๐‘…๐‘› , and ๐ท โŠ‚ ๐‘…๐‘› be a
domain containing the origin, i.e.๐‘ฅ = 0. Now using Lyapunov stability theorem, which states that ๐‘ฅ = 0 is stable, if
๐‘‰ โˆถ ๐ท โ†’ ๐‘… is a continuously differentiable function, such that ๐‘‰(0) = 0 and ๐‘‰(๐‘ฅ) > 0 in ๐ท โˆ’ {0}
(2.5)
and ๐‘‰ห™ (๐‘ฅ) โ‰ค 0 in ๐ท
(2.6)
where, ๐‘‰ห™ (๐‘ฅ), is the derivative of ๐‘‰ along the trajectories of (2.4), given by
๐œ•๐‘‰
๐œ•๐‘‰
๐œ•๐‘‰
๐‘‰ห™ (๐‘ฅ) = โˆ‘๐‘›i=1 ๐‘ฅห™๐‘– = โˆ‘๐‘›i=1 ๐‘“๐‘– (๐‘ฅ) =
๐‘“(๐‘ฅ)
(2.7)
๐œ•๐‘ฅ๐‘–
๐œ•๐‘ฅ๐‘–
๐œ•๐‘ฅ
Thus, the equilibrium point is stable if, for each ๐œ€ > 0,there is ๐›ฟ = ๐›ฟ(๐œ€) > 0such that for all ๐‘ก โ‰ฅ 0,we
have โ€–๐‘ฅ(0) โ€– < ๐›ฟ โ‡’ โ€–๐‘ฅ(0) โ€– < ๐œ€
(2.8)
Page | 2
International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 5 Issue 1, May-2016
We know that if we have a map ๐‘€ โˆถ ๐‘ˆ โŠ‚ ๐‘‰ โ†’ ๐‘Š such that there is bijection ๐‘€ between open sets ๐‘ˆ๐›ผ โŠ‚ ๐‘‰ and
๐‘ˆ๐›ฝ โŠ‚ ๐‘Š , then it is called a ๐ถ ๐‘Ÿ - diffeomorphism if and only if ๐‘€and ๐‘€โˆ’1 are both ๐ถ ๐‘Ÿ -differentiable.
If ๐‘Ÿ = โˆž then ๐‘€ is called diffeomorphism.
In general, to obtain a linear mathematical model for a nonlinear system, it is assumed that the variables deviate only
slightly from some operating point. To get feedback linearization model, nonlinear system should be of the form
๐‘ฅห™ = ๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ)๐‘ข
(2.9)
๐‘ฆ = โ„Ž(๐‘ฅ)
(2.10)
where,๐‘“(๐‘ฅ) is a locally Lipchitz ; ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ)are continuous over ๐‘…๐‘› ; ๐‘ฅ โˆˆ ๐‘…๐‘› is the state vector ;
๐‘ข โˆˆ ๐‘…๐‘Ÿ is the vector of inputs ;
๐‘ฆ โˆˆ ๐‘…๐‘š is the vector of outputs
Then, the equivalent linearized system is obtained using the change of variables and a control input, which then
presents a linear input-output map between the new input and the output.
Thus, we a state feedback control, given as
๐‘ข = ๐›ผ(๐‘ฅ) + ๐›ฝ(๐‘ฅ)๐œ
(2.11)
and the change of variables by ๐‘ง = ๐‘‡(๐‘ฅ)
(2.12)
From the theory of โ€œLie derivativesโ€, we know that
Let there be a scalar field ๐‘(๐œ‰) in an n-dimensional space ๐‘‹๐‘› and an infinitesimal point transformation such that, ๐‘‡ โˆถ
โ€ฒ๐œ‰ ๐‘ฅ = ๐œ‰ ๐‘ฅ + ๐œˆ ๐‘ฅ ๐‘‘๐‘ก and let the dragging along (๐œ’) โ†’ (๐œ’โ€ฒ)of the coordinate system (๐œ’) by the infinitesimal point
transformation ๐‘‡ โˆ’1 โˆถ โ€ฒ๐œ‰ โ†’ ๐œ‰ inverse to ๐‘‡ is given by
๐œ‰ ๐‘ฅโ€ฒ = ๐œ‰ ๐‘ฅ + ๐œˆ ๐‘ฅ ๐‘‘๐‘ก
(2.13)
Suppose we have a covariant vector field ๐‘ค๐œ† (๐œ‰) in ๐‘‹๐‘› and a new covariant vector field โ€ฒ๐‘ค๐œ† (๐œ‰) at ๐œ‰ as a field whose
components โ€ฒ๐‘ค๐œ†โ€ฒ (๐œ‰) w.r.t.(๐œ’โ€ฒ) at ๐œ‰ such that โ€ฒ๐‘ค๐œ†โ€ฒ (๐œ‰) โ‰ ๐‘ค๐œ† (โ€ฒ๐œ‰)
Then, the Lie derivative of ๐‘ค๐œ† is given by ๐ฟ๐œˆ ๐‘ค๐œ† = ๐œˆ ๐œ‡ ๐œ•๐œ‡ ๐‘ค๐œ† + ๐‘ค๐œ‡ ๐œ•๐œ† ๐œˆ ๐œ‡
Thus, Lie derivative evaluates the change of a field along the flow of another vector field. Using this concept in (2.9)
and (2.10), we can write the Lie derivative of โ„Ž along ๐‘“ as
๐œ•โ„Ž
๐ฟ๐‘“ โ„Ž(๐‘ฅ) =
๐‘“(๐‘ฅ)
(2.14)
๐œ•๐‘ฅ
Similarly, we can define other Lie derivatives as
๐ฟ๐‘” ๐ฟ๐‘“ โ„Ž(๐‘ฅ) =
๐ฟ๐‘˜๐‘“ โ„Ž(๐‘ฅ) =
๐œ•(๐ฟ๐‘“ โ„Ž)
๐œ•๐‘ฅ
๐œ•๐ฟ๐‘˜โˆ’1
๐‘“ โ„Ž
๐œ•๐‘ฅ
๐‘”(๐‘ฅ)
(2.15)
๐‘“(๐‘ฅ)
(2.16)
๐ฟ0๐‘“ โ„Ž(๐‘ฅ) = โ„Ž(๐‘ฅ)
(2.17)
The system in (2.9) is input-state linearizable if and only if โˆƒ โ„Ž(๐‘ฅ) satisfies (2.18) and (2.19)
๐ฟ๐‘” ๐ฟ๐‘–๐‘“ โ„Ž(๐‘ฅ) = 0 , 0 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 2
(2.18)
and ๐ฟ๐‘” ๐ฟ๐‘›โˆ’๐‘–
โ„Ž(๐‘ฅ)
โ‰ 
0
,
โˆ€
๐‘ฅ
โˆˆ
๐ท
(2.19)
๐‘ฅ
๐‘“
Thus, the system in (2.9) and (2.10) has a relative degree ๐‘› in ๐ท๐‘ฅ and the change of variables (2.12) can be applied as
๐‘ง = ๐‘‡(๐‘ฅ) = [ โ„Ž(๐‘ฅ), ๐ฟ๐‘“ โ„Ž(๐‘ฅ), . . . , ๐ฟ๐‘›โˆ’1
๐‘“ โ„Ž(๐‘ฅ) ]
๐‘‡
(2.20)
Now, since for all๐‘ฅ โˆˆ ๐ท,the row vectors and column vectors are linearly independent, thus the Jacobian matrix
๐œ•๐‘‡
[ ] (๐‘ฅ) is non-singular โˆ€ ๐‘ฅ โˆˆ ๐ท๐‘ฅ .Hence, for each ๐‘ฅ0 โˆˆ ๐ท๐‘ฅ ,there is neighborhood ๐‘ of ๐‘ฅ0 such that ๐‘‡(๐‘ฅ), restricted
๐œ•๐‘ฅ
to ๐‘,is a diffeomorphism.
Thus, it can be said that the system is input-state linearizable if and only if it satisfies (2.21) and (2.22) and โˆƒ domain
๐ท๐‘ฅ โŠ‚ ๐ท, such that matrix ๐บ(๐‘ฅ) has a rank ๐‘› โˆ€ ๐‘ฅ โˆˆ ๐ท๐‘ฅ
(2.21)
and distribution, ฮ” is involutive in ๐ท๐‘ฅ
(2.22)
๐‘›โˆ’1
,where
matrix๐บ(๐‘ฅ) = [๐‘”(๐‘ฅ), ๐‘Ž๐‘‘๐‘“ ๐‘”(๐‘ฅ), . . . , ๐‘Ž๐‘‘๐‘“ ๐‘”(๐‘ฅ)] and distribution, ฮ”= span{๐‘”, ๐‘Ž๐‘‘๐‘“ ๐‘”, . . . , ๐‘Ž๐‘‘๐‘“๐‘›โˆ’2 ๐‘”}
A non-linear system (2.9),where ๐ท๐‘ฅ โˆˆ ๐‘…๐‘› , ๐‘“: ๐ท๐‘ฅ โ†’ ๐‘…๐‘› , ๐บ โˆถ ๐ท๐‘ฅ โ†’ ๐‘…๐‘›×๐‘ , is said to be input-state linearizable, if there
exists a diffeomorphism ๐‘‡: ๐ท๐‘ฅ โ†’ ๐‘…๐‘› , such that ๐ท๐‘ง = ๐‘‡(๐ท๐‘ฅ ),contains the origin and (2.12) transforms (2.9) into
๐‘งห™ = ๐ด๐‘ง + ๐ต๐›ฝ โˆ’1 (๐‘ฅ)[ ๐‘ข โˆ’ ๐›ผ(๐‘ฅ) ]
(2.23)
with(๐ด, ๐ต)controllable and ๐›ฝ(๐‘ฅ)non-singular for all,๐‘ฅ โˆˆ ๐ท๐‘ฅ .
๐œ•๐‘‡
๐œ•๐‘‡
[๐‘“(๐‘ฅ) + ๐บ(๐‘ฅ)๐‘ข]
Thus, we get ๐‘งห™ =
๐‘ฅห™ =
๐œ•๐‘ฅ
๐œ•๐‘ฅ
and
ห™๐‘ง = ๐ด๐‘‡(๐‘ฅ) + ๐ต๐›ฝ โˆ’1 (๐‘ฅ)[ ๐‘ข โˆ’ ๐›ผ(๐‘ฅ) ]
(2.24)
(2.25)
Page | 3
International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 5 Issue 1, May-2016
From (2.24) and (2.25), we get
๐œ•๐‘‡
๐œ•๐‘ฅ
[๐‘“(๐‘ฅ) + ๐บ(๐‘ฅ)๐‘ข] = ๐ด๐‘‡(๐‘ฅ) + ๐ต๐›ฝ โˆ’1 (๐‘ฅ)[ ๐‘ข โˆ’ ๐›ผ(๐‘ฅ) ]
Now if we put ๐‘ข = 0 in (2.26), we get
๐œ•๐‘‡
๐‘“(๐‘ฅ) = ๐ด๐‘‡(๐‘ฅ) โˆ’ ๐ต๐›ฝ โˆ’1 (๐‘ฅ) ๐›ผ(๐‘ฅ)
(2.27)
โˆ’1 (๐‘ฅ)
(2.28)
๐œ•๐‘ฅ
๐œ•๐‘‡
๐œ•๐‘ฅ
๐บ(๐‘ฅ) = ๐ต๐›ฝ
(2.26)
Thus, if there is a map ๐‘‡( โ‹… ) ,which satisfies (2.27) and (2.28) for some ๐›ผ, ๐›ฝ, ๐ด, ๐ต, then (2.12) transforms (2.9) into
(2.23).
Now, if apply linear state transformation in (2.23) with ๐œ = ๐‘€ ๐‘ง with a singular ๐‘€, then the state equation in the ๐œ โˆ’
coordinates are given by
๐œห™ = ๐‘€ ๐ด ๐‘€โˆ’1 ๐œ + ๐‘€ ๐ต๐›ฝ โˆ’1 (๐‘ฅ)[ ๐‘ข โˆ’ ๐›ผ(๐‘ฅ) ]
(2.29)
Now if we have single input system instead of multiple-input, thus, now ๐‘ = 1. In this case, for any controllable
pair (๐ด, ๐ต), we can find a nonsingular matrix ๐‘€ that transforms (๐ด, ๐ต) into canonical form
๐‘€ ๐ด ๐‘€โˆ’1 = ๐ด๐‘ + ๐ต๐‘ ๐œ†๐‘‡
(2.30)
and ๐‘€ ๐ต = ๐ต๐‘
(2.31)
where
0 1 0 โ€ฆ 0
0 0 1 โ€ฆ 0
๐ด๐‘ = โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฑ โ‹ฎ
(2.32)
โ‹ฎ โ‹ฎ โ‹ฎ 0 1
[0 โ€ฆ โ€ฆ 0 0]๐‘› × ๐‘›
0
0
and ๐ต๐‘ = โ‹ฎ
(2.33)
0
[1]
๐‘‡1 (๐‘ฅ)
๐‘‡2 (๐‘ฅ)
โ‹ฎ
Let ๐‘‡(๐‘ฅ) =
(2.34)
๐‘‡๐‘›โˆ’1 (๐‘ฅ)
[ ๐‘‡๐‘› (๐‘ฅ) ]
Thus,
๐‘‡2 (๐‘ฅ)
๐‘‡3 (๐‘ฅ)
โ‹ฎ
๐ด๐‘ ๐‘‡(๐‘ฅ) โˆ’ ๐ต๐‘ ๐›ฝ โˆ’1 (๐‘ฅ) ๐›ผ(๐‘ฅ) =
(2.35)
๐‘‡๐‘› (๐‘ฅ)
[โˆ’๐›ผ (๐‘ฅ)โ„๐›ฝ (๐‘ฅ)]
0
0
โ‹ฎ
and
๐ต๐‘ ๐›ฝ โˆ’1 (๐‘ฅ) =
(2.36)
0
[1โ„๐›ฝ (๐‘ฅ)]
Using these expressions in (2.27),we get simplified partial differential equations as
๐œ•๐‘‡1
๐‘“(๐‘ฅ) = ๐‘‡2 (๐‘ฅ) ;
(2.37)
๐œ•๐‘ฅ
๐œ•๐‘‡2
๐‘“(๐‘ฅ) = ๐‘‡3 (๐‘ฅ) ;
โ‹ฎ
๐œ•๐‘‡๐‘›โˆ’1
๐‘“(๐‘ฅ) = ๐‘‡๐‘› (๐‘ฅ) ;
(2.38)
๐œ•๐‘ฅ
(2.39)
๐œ•๐‘ฅ
๐œ•๐‘‡๐‘›
๐œ•๐‘ฅ
๐‘“(๐‘ฅ) = โˆ’๐›ผ (๐‘ฅ)โ„๐›ฝ (๐‘ฅ)
(2.40)
Using these expressions in (2.28), we get simplified partial differential equations as
๐œ•๐‘‡1
๐‘”(๐‘ฅ) = 0 ;
(2.41)
๐œ•๐‘ฅ
๐œ•๐‘‡2
๐œ•๐‘ฅ
๐‘”(๐‘ฅ) = 0 ;
โ‹ฎ
(2.42)
Page | 4
International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 5 Issue 1, May-2016
๐œ•๐‘‡๐‘›โˆ’1
๐œ•๐‘ฅ
๐œ•๐‘‡๐‘›
๐œ•๐‘ฅ
๐‘”(๐‘ฅ) = 0 ;
(2.43)
๐‘”(๐‘ฅ) = 1โ„๐›ฝ (๐‘ฅ) โ‰  0
(2.44)
Now, the function ๐‘‡1 (๐‘ฅ) has to be searched, which satisfies
๐œ•๐‘‡๐‘–
๐‘”(๐‘ฅ) = 0 ; (๐‘› โˆ’ 1) โ‰ค ๐‘– โ‰ค 1
(2.45)
๐œ•๐‘ฅ
where, ๐‘‡๐‘– +1 (๐‘ฅ) =
๐œ•๐‘‡๐‘›
๐œ•๐‘ฅ
๐œ•๐‘‡๐‘–
๐œ•๐‘ฅ
(๐‘› โˆ’ 1) โ‰ค ๐‘– โ‰ค 1
๐‘“(๐‘ฅ),
๐‘”(๐‘ฅ) โ‰  0
(2.46)
If there is a function which satisfies (2.45) and (2.46), then
1
๐›ฝ(๐‘ฅ) = (๐œ•๐‘‡ โ„
(2.47)
๐›ผ(๐‘ฅ) = โˆ’
๐‘› ๐œ• ๐‘ฅ)๐‘”(๐‘ฅ)
(๐œ•๐‘‡๐‘›โ„๐œ• ๐‘ฅ)๐‘“(๐‘ฅ)
(2.48)
(๐œ•๐‘‡๐‘›โ„๐œ• ๐‘ฅ)๐‘”(๐‘ฅ)
From differential geometry approach, we also noticed that for all ๐‘ฅ โˆˆ ๐ท,
๐ฟ๐‘Ž๐‘‘ ๐‘–๐‘” ๐ฟ๐‘“ ๐‘˜ โ„Ž(๐‘ฅ) = 0 ,0 โ‰ค ๐‘— + ๐‘˜ < ๐‘Ÿ โˆ’ 1
๐‘“
๐ฟ๐‘Ž๐‘‘
๐‘˜ โ‰ฅ 0, 0 โ‰ค ๐‘— โ‰ค ๐‘Ÿ โˆ’ 1, we have
(2.49)
๐ฟ ๐‘˜ โ„Ž(๐‘ฅ) = (โˆ’1)๐‘— ๐ฟ๐‘” ๐ฟ๐‘“ ๐‘Ÿโˆ’1 โ„Ž(๐‘ฅ) โ‰  0 , ๐‘— + ๐‘˜ = ๐‘Ÿ โˆ’ 1
(2.50)
๐‘–
๐‘“
๐‘“ ๐‘”
and the row vectors [๐‘‘โ„Ž(๐‘ฅ), โ€ฆ , ๐‘‘๐ฟ๐‘“
๐‘Ÿโˆ’1
โ„Ž(๐‘ฅ)] and column vectors[๐‘”(๐‘ฅ)
โ€ฆ
๐‘Ž๐‘‘๐‘“ ๐‘Ÿโˆ’1 ๐‘”(๐‘ฅ)] are linearly independent.
From Jacobian identity, we know that for any real-valued ๐œ† and any vector fields ๐‘“and ๐›ฝ,
๐ฟ[๐‘“,๐›ฝ] ๐œ†(๐‘ฅ) = ๐ฟ๐‘“ ๐ฟ๐›ฝ ๐œ†(๐‘ฅ) โˆ’ ๐ฟ๐›ฝ ๐ฟ๐‘“ ๐œ†(๐‘ฅ)
(2.51)
Also the distribution, ฮ” generated by ๐‘“1, โ€ฆ , ๐‘“๐‘Ÿ is said to be completely integrable if for each ๐‘ฅ0 โˆˆ ๐ท, โˆƒ a neighborhood
๐‘ of ๐‘ฅ0 and ๐‘› โˆ’ ๐‘Ÿ real-valued smooth functions โ„Ž1 (๐‘ฅ), โ€ฆ , โ„Ž๐‘›โˆ’๐‘Ÿ (๐‘ฅ) satisfy the partial differential equations
๐œ•โ„Ž๐‘–
๐‘“ (๐‘ฅ) = 0, โˆ€ 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ, 1 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ ๐‘Ÿ
(2.52)
๐œ•๐‘ฅ ๐‘–
and the covector fields ๐‘‘โ„Ž๐‘— (๐‘ฅ)are linearly independent for all ๐‘ฅ โˆˆ ๐ท.Thus, a nonsingular distribution is completely
integrable if and only if it is involutive, and is called as Frobenius theorem.
3. DC MOTOR LINEARIZATION
Let us now apply all these concepts in obtaining the exact linearization model of the DC motor.Let the field controlled
motor is represented by the system as
๐‘ฅห™ = ๐‘“(๐‘ฅ) + ๐‘” ๐‘ข,
(3.1)
โˆ’๐‘Ž๐‘ฅ1
1
where ๐‘“(๐‘ฅ) = [โˆ’๐‘๐‘ฅ2 + ๐œŒ โˆ’ ๐‘๐‘ฅ1 ๐‘ฅ3 ] ; ๐‘” = [0]
(3.2)
๐œƒ๐‘ฅ1 ๐‘ฅ2
0
and
๐‘Ž, ๐‘, ๐‘, ๐œƒ, ๐œŒ are positive constants
Let๐‘ฅ1 = 0, ๐‘ฅ2 = ๐œŒโ„๐‘,be the equilibrium point for the open loop system and the desired operating point be ~
๐‘ฅ given
as ~๐‘ฅ = (0, ๐œŒโ„๐‘ , ๐œ”0 )๐‘‡ , where ๐œ”0 is a desired set point for the angular velocity ๐‘ฅ3.
๐œ•๐‘‡
๐œ•๐‘‡
Let ๐‘‡2 (๐‘ฅ) = 1 ๐‘“(๐‘ฅ) ; ๐‘‡3 (๐‘ฅ) = 2 ๐‘“(๐‘ฅ)
(3.3)
๐œ•๐‘ฅ
๐œ•๐‘ฅ
Then, with ๐‘‡1 (๐‘ฅ
~) = 0,we can find ๐‘‡1 = ๐‘‡1 (๐‘ฅ),which satisfies the conditions (2.41),(2.42) and
๐œ•๐‘‡3
๐‘”(๐‘ฅ) โ‰  0
(3.4)
๐œ•๐‘ฅ
๐œ•๐‘‡1
thus,
๐œ•๐‘ฅ
๐‘” =
๐œ•๐‘‡1
๐œ•๐‘ฅ1
= 0
(3.5)
and therefore,
๐‘‡2 (๐‘ฅ) =
Using (2.42) in (2.46),we get
๐‘๐‘ฅ3
๐œ•๐‘‡1
๐œ•๐‘ฅ2
๐œ•๐‘‡1
๐œ•๐‘ฅ2
[โˆ’๐‘๐‘ฅ2 + ๐œŒ โˆ’ ๐‘๐‘ฅ1 ๐‘ฅ3 ] +
= ๐œƒ๐‘ฅ2
๐œ•๐‘‡1
๐œ•๐‘ฅ3
Equation (3.7) will be satisfied if ๐‘‡1 is of the form
๐œ•๐‘‡1
๐œ•๐‘ฅ3
๐œƒ๐‘ฅ1 ๐‘ฅ2
,
(3.6)
(3.7)
๐‘‡1 =
๐‘1 [๐œƒ๐‘ฅ22
Let ๐‘1 = 1 and ๐‘2 = โˆ’๐œƒ(๐‘ฅ
~)22 โˆ’ ๐‘(๐‘ฅ
~)23 = โˆ’๐œƒ(๐œŒโ„๐‘)2 โˆ’ ๐‘๐œ”02
+
๐‘๐‘ฅ32 ]
+ ๐‘2
(3.8)
(3.9)
Page | 5
International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 5 Issue 1, May-2016
using (3.9), we get
and
hence,
๐‘‡2 (๐‘ฅ) = 2๐œƒ๐‘ฅ2 (๐œŒ โˆ’ ๐‘๐‘ฅ2 )
๐‘‡3 (๐‘ฅ) = 2๐œƒ(๐œŒ โˆ’ 2๐‘๐‘ฅ2 )(๐‘๐‘ฅ2 + ๐œŒ โˆ’ ๐‘๐‘ฅ1 ๐‘ฅ3 )
๐œ•๐‘‡3
๐œ•๐‘ฅ
๐‘” =
๐œ•๐‘‡3
๐œ•๐‘ฅ1
(3.10)
(3.11)
= 2๐‘๐œƒ(๐œŒ โˆ’ 2๐‘๐‘ฅ2 )(๐‘ฅ3 )
(3.12)
and the (3.4) is satisfied, whenever ๐‘ฅ2 โ‰  ๐œŒโ„๐‘ , ๐‘ฅ3 โ‰  0.
Let ๐ท๐‘ฅ contains the point ~๐‘ฅ and ~
๐‘ฅ3 > 0,then
๐ท๐‘ฅ = {๐‘ฅ โˆˆ ๐‘…3 ; ๐‘ฅ2 >
๐œŒ
2๐‘
, ๐‘ฅ3 > 0}
(3.13)
Thus, the map (2.12) is diffeomorphism on ๐ท๐‘ฅ and the state equation in the ๐‘ง โˆ’ coordinates are defined in
๐ท๐‘ง = ๐‘‡(๐ท๐‘ฅ ) = {๐‘ง โˆˆ ๐‘…3 }
(3.14)
๐œƒ๐œŒ
2
2
2
{๐‘ง1 > ๐œƒ๐œ™ (๐‘ง)2 โˆ’ ๐œƒ(๐œŒโ„๐‘) โˆ’ ๐‘๐œ”0 }, {๐‘ง2 < } and ๐œ™( โ‹… ) is the inverse of the map
such that
2๐‘
2๐œƒ๐‘ฅ2 (๐œŒ โˆ’ ๐‘๐‘ฅ2 ). Thus, domain ๐ท๐‘ง contains the origin ๐‘ง = 0.
Now, we can verify the same using differential geometry approach as explained in the previous section. As we know
๐‘Ž
๐‘Ž2
2
(๐‘Ž + ๐‘)๐‘๐‘ฅ3 ] ;
๐‘Ž๐‘‘๐‘“ ๐‘” = [๐‘“, ๐‘”] = [ ๐‘๐‘ฅ3 ] ; ๐‘Ž๐‘‘๐‘“ ๐‘” = [๐‘“, ๐‘Ž๐‘‘๐‘“ ๐‘”] = [
โˆ’๐œƒ๐‘ฅ2
(๐‘ โˆ’ ๐‘Ž)๐œƒ๐‘ฅ2 โˆ’ ๐œƒ๐œŒ
Considering ๐บ =
[๐‘”, ๐‘Ž๐‘‘๐‘“ ๐‘”, ๐‘Ž๐‘‘๐‘“2 ๐‘”]
thus, the determinant of ๐บ,
1
= [0
0
๐‘Ž
๐‘๐‘ฅ3
โˆ’๐œƒ ๐‘ฅ2
๐‘Ž2
(๐‘Ž + ๐‘)๐‘๐‘ฅ3
];
(๐‘ โˆ’ ๐‘Ž)๐œƒ ๐‘ฅ2 โˆ’ ๐œƒ ๐œŒ
det๐บ = ๐‘๐œƒ(โˆ’๐œŒ + 2๐‘๐‘ฅ2 )๐‘ฅ3 . Hence,๐บ has a rank 3 for ๐‘ฅ2 โ‰  ๐œŒโ„2 ๐‘, ๐‘ฅ3 โ‰  0. Now,
0 0 0 1
0
๐œ•(๐‘Ž๐‘‘๐‘“ ๐‘”)
[๐‘”, ๐‘Ž๐‘‘๐‘“ ๐‘”] =
๐‘” = [0 0 ๐‘ ] [0] = [0].
๐œ•๐‘ฅ
0 โˆ’๐œƒ 0 0
0
๐œŒ
Hence the distribution โˆ† = span{๐‘”, ๐‘Ž๐‘‘๐‘“ ๐‘”}is involutive as [๐‘”, ๐‘Ž๐‘‘๐‘“ ๐‘”] โˆˆ ๐ทand ๐ท๐‘ฅ = {๐‘ฅ โˆˆ ๐‘…3 ; ๐‘ฅ2 >
, ๐‘ฅ3 > 0} ,
2๐‘
which is same as (3.14) and this completes the verification and the development of exact feedback linearized model of
the DC motor.
CONCLUSION
The results of geometric approach are compared and found similar, if other tools are used e.g.. input-state linearization
and the input-output linearization, to obtain the exact feedback linearization mathematical model of non linear model of
a DC motor.
REFERENCES
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Krause,Oleg,Sudhoff,โ€ Analysis of electric machinery and Drives systems,โ€ IEEE Press, 2002, ch. 2.
Ned Mohan โ€œFirst Course on Power Electronics and Drivesโ€, MNPERE Minneapolis, 2003, ch. 11.
Serge Lang,โ€Differential and Riemannian Manifoldsโ€, Springer-Verlag, 1995, ch.1.
Tom M. Apostol,โ€Mathematical Analysisโ€,Addison-Wesley Publishing Company, World Student Series Edition, 1981, ch.
4, ch. 5.
Sharipov R. A. ,โ€Course of Differential Geometry: the textbookโ€, Russian Federal Committee for Higher Education, 2004,
ch. 2.
Jeffrey M. Lee,โ€ Manifolds and Differential Geometryโ€, American Mathematical Society, 2009, ch. 1, ch. 8.
Michael Müger,โ€ An Introduction to Differential Topology,de Rham Theory and Morse Theoryโ€, 2005.
M. Vidyasagar,โ€Non linear system analysisโ€, Prentice-Hall, 199, ch. 6 , ch.7.
Horacio J. Marquez ,โ€Nonlinear Control Systems Analysis and Designโ€, John Wiley & Sons Inc., 2003, ch. 6, ch. 10.
Lui Lam,โ€Nonlinear Physics for Beginners Fractals, Chaos, Solitons, Pattern Formation, Cellular Automata and
Complexโ€, World Scientific Publishing Co. Pte. Ltd., 199, ch. 1.
Gildas Besancon (Ed.), โ€Nonlinear Observers and Applicationsโ€, Springer, 2007, ch.1 ,ch.3, ch. 5.
Wassim M. Haddad, Vijay Sekhar Chellaboina, โ€œNonlinear Dynamical Systems and Control: A Lyapunov-Based
Approachโ€, Princeton University Press, 2008, ch. 2, ch. 4,ch.7,ch.8 ,ch.9.
Walter Rudin,โ€Real And Complex Analysisโ€, McGrawHill, 1970, ch. 17.
V.S. Varadarajan,โ€Lie Groups, Lie Algebras, and Their Representationsโ€,Springer-Verlag,New York, 1984, ch.1, ch.2.
Francesco Iachello,โ€Lie Algebras and Applicationsโ€, Springer-Verlag Berlin Heidelberg, 2006, ch.1 ch.3., ch. 4.
Page | 6