* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download top 5 organic - No Brain Too Small
Asymmetric induction wikipedia , lookup
Bottromycin wikipedia , lookup
Physical organic chemistry wikipedia , lookup
George S. Hammond wikipedia , lookup
Ring-closing metathesis wikipedia , lookup
Ene reaction wikipedia , lookup
Hofmann–Löffler reaction wikipedia , lookup
Baylis–Hillman reaction wikipedia , lookup
Wolff rearrangement wikipedia , lookup
Wolff–Kishner reduction wikipedia , lookup
Hydroformylation wikipedia , lookup
Strychnine total synthesis wikipedia , lookup
No Brain Too Small CHEMISTRY TOP FIVE ORGANIC THINGS TO KNOW (It’s hard to choose just 5 areas but these are all very important ones) Esters - know how to make, break and name an ester (and that esters are structural isomers with c.acids) • Naming ___yl ______oate. “-yl part from alcohol (“in-line -O), -oate part from carboxylic acid (dangly =O”) These 3 below are all identical – all are ethyl butanoate • H H C H H C H H C H O H H H C C H C C H H H H H H H O C C C C O • O O H O H C H H H H C H H C H H H H C H HH C C H C H H Two ways to make o Heat alcohol + c.acid + conc H2SO4 – conc. H2SO4 as a catalyst, and as a dehydrating agent • Lose the -OH of c.acid and -H of alcohol as water o Mix acid chloride + alcohol – don’t need heat or any conc. H2SO4 • Lose the -Cl of acid chloride and -H of alcohol as HCl(g) Preparation method (alc + c.acid); heat under reflux; add carbonate to neutralise acids, separate ester from impurities by distillation Breaking – reaction with H2O - hydrolysis (break where you make – i.e between O and C=O) o Acid hydrolysis: heat with dilute acid (H+/H2O, heat) – get alcohol + c. acid o Alkaline hydrolysis: heat with dilute NaOH, (NaOH(aq), heat) - get alcohol + sodium salt of the carboxylic acid RCOO-Na+ Something for nothing If you can make / break an ester you can also do / draw / explain o Formation of fats/oils from propan-1,2,3-triol & 3 fatty acids o Alkaline hydrolysis of fats/oils for form propan-1,2,3-triol & the sodium salts of fatty acids o Acid hydrolysis of fats/oils for form propan-1,2,3-triol & the fatty acids o Formation of polyesters from HO-X-OH & HOOC-Y-COOH or HO-X-OH & ClOC-Y-COCl o Hydrolysis of polyesters under acidic or alkaline conditions • • • • Isomerism e.g. C4H8O2 could be an ester or a carboxylic acid (although they would be easy to distinguish by their reactions and physical properties) H H H C C H H O C H O H C H H H H H C C C H H H O C O H No Brain Too Small CHEMISTRY Alcohols, their reactions and how to distinguish between them Reaction - Oxidation Use orange coloured H+/Cr2O72- (reduced to green Cr3+) or purple coloured H+/MnO4-(reduced to colourless Mn2+) • • • Primary alc aldehyde (-CHO) c.acid (-COOH) Secondary alc ketone X (not further oxidised) Tertiary alc X (not further oxidised) Because the aldehyde is “on its way” to becoming oxidised to a c.acid…. • • If you want the aldehyde distill it off as soon as it is made or it will be fully oxidised to c.acid. Aldehydes can be oxidised futher (unlike ketones) and so this allows them to be distinguished from ketones by using mild oxidising agents like: o Tollens / Silver mirror test. Ag+/NH3, heat. Result – silver mirror Ag+ + e- Ag o Benedicts / Fehlings solution. Cu2+, heat. Result – orange ppt of Cu2O Cu2+ + e- Cu+ o H+/Cr2O72- , heat. Result – orange to green colour change Cr2O72- + 14H+ + 6e- 2Cr3+ + 7H2O o In all 3 above the aldehyde c. acid • Lucas reagent – to distinguish 1o, 2o and 3o alcohols Warm alcohol with Lucas reagent: anhydrous ZnCl2/conc HCl, heat o Primary alc no change (for a very, very long time) o Secondary alc cloudy after about 10 mins o Tertiary alc cloudy almost immediately Cloudiness due to formation of insoluble haloalkane in substitution reaction, -OH off and -Cl on Reaction – Esterification • • R-OH + R’-COOH ⇌ R’COOR + H2O ; Conc sulfuric acid acts as catalyst but also removes the water product, shifting eqm. position to right in favour of ester product R-OH can be primary, secondary or tertiary Reaction – formation of haloalkane (a substitution reaction) • • R-OH + SOCl2 R-Cl + SO2 + HCl SOCl2 will work for primary, secondary & tertiary (and therefore safer bet than PCl5 or PCl3 or conc HCl or conc HCl/ZnCl2). Reaction – dehydration to form alkenes C=C & H2O (an elimination reaction) • • Heat, conc H2SO4 If the alcohol is unsymmetrical, get 2 products (the poor get poorer) No Brain Too Small CHEMISTRY Haloalkanes R-X where X is -F, -Cl, -Br, -I (but usually -Cl) Can be primary, secondary or tertiary Reaction - Formation • • from (any) alcohol using SOCl2 (substitution) R-OH R-Cl from alkenes using H-X (addition) e.g. HCl …but remember if alkene is unsymmetrical = 2 products (the rich get richer) Reactions – Elimination & Substitution with haloalkanes • “Eliminate (with) the alcohol!!!!” meaning NaOH(alc) favours elimination from the haloalkane! Warm with NaOH(alc) or KOH(alc); NaOH or KOH dissolved in ethanol R-X + NaOH(alc) alkene + NaX + H2O … but remember if haloalkane is unsymmetrical = 2 products (the poor get poorer) • “Substitute (with) the water!!!!” meaning NaOH(aq) favours substitution of the haloalkane! Uses NaOH(aq) or KOH(aq); NaOH or KOH dissolved in water R-X + NaOH(aq) R-OH + NaX No Brain Too Small CHEMISTRY Amino acids • Are building blocks of peptides & proteins • Have a –NH2 and a –COOH group attached to the same C atom • Can be chiral if the “middle C” has 2 different groups/atoms attached to it e.g. H • H H C N C H H H H O C O Join together in a condensation reaction, eliminating the small molecule H2O, forming the “amide / peptide” link of -CONHH H H C N C H H H O O H C H C C N H H • O If you join 2 different amino acids you can make 2 different dipeptides H H H C N C H O O H C H H N H H N C H H O O H C H C C H C C H O O H N C H H H H and NH2 end bonded to -CH(CH3)• NH2 end bonded to -CH2- And where you break is where you make…. in the reaction with dilute acids or alkalis (hydrolysis). H H H C N C H H H O O H C C N H o o H C O H Under acidic conditions end up with a -COOH end and a -NH3+ end to the amino acids Under alkaline conditions end up with a -COO- (or -COO-Na+) end and a -NH2 end to the amino acids No Brain Too Small CHEMISTRY Addition reactions of alkenes (Level 2 stuff but still VERY important…) Addition of an unsymmetrical reagent, e.g. HCl or H2O to an unsymmetrical alkene; the rich get richer. Addition of HCl to propene H major product H C C H H H C H H H H C C C H H Cl H Cl H minor product H H H C C C H H H H Addition of HCl to cis and trans isomers of but-2-ene only forms ONE product because but-2-ene is symmetrical – and the product – a haloalkane has single C-C bonds which can freely rotate H H H H H C H C H H C C H H C H H H C C C H H H and both give the same product H Cl H H H C C C C H H H H H For geometrical isomers to exist you need: o A C=C double bond, around which there is NO free rotation o The groups/atoms on the C atom at EACH END OF the C=C double bond need to be different to each other. different same H C H H no cis / trans Br C C C different H H H H different C H H C C H H H H can exist as cis and trans Addition of water to an alkene – hydration, an addition reaction. Heat with dilute acid e.g. sulfuric acid. We normally write this as H+/H2O, heat No Brain Too Small CHEMISTRY Amides and amines H H H H H C C C N H H H H propylamine /1-aminopropane • H C C H H O C H N H propanamide Be able to distinguish between them – use UI or litmus o o • H H Amines are basic since RNH2 + H2O ⇌ RNH3+ + OH- but amides are essentially neutral Amines smell bad / fishy / rotten; amides don’t (ethanamide smells of “mouse droppings” but apparently that’s due to an impurity in the chemical not the ethanamide itself!) How to form them o Amine: R-OH + NH3 R-NH2 + H2O; use conc NH3 – reaction is substitution These reactions require catalysts, specialised apparatus, and additional purification measures. The same amines can be prepared by treatment of haloalkanes with ammonia. You get amines formed together with their salts e.g. R-X + NH3(alc) R-NH3+ X- and then R-NH3+ X- + NH3 R-NH2 + NH4X. o Amide: R-COOH + conc NH3 WILL NOT directly form R-CONH2 + H2O even though it looks like it will do a simple substitution reaction from looking at the formula. This is because R-COOH is an acid and NH3 is a base – so their reaction will be an acid-base reaction and will make the salt of R-COO- NH4+. To make the amide you need react excess R-COOH with (NH4)2CO3 and heat the R-COO- NH4+ formed, which will break down to give R-CONH2 + H2O