* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Special Rotational Dynamics Outline
Modified Newtonian dynamics wikipedia , lookup
Mitsubishi AWC wikipedia , lookup
Coriolis force wikipedia , lookup
Routhian mechanics wikipedia , lookup
Classical mechanics wikipedia , lookup
Fictitious force wikipedia , lookup
Jerk (physics) wikipedia , lookup
Old quantum theory wikipedia , lookup
Tensor operator wikipedia , lookup
Laplace–Runge–Lenz vector wikipedia , lookup
Hunting oscillation wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Center of mass wikipedia , lookup
Mass versus weight wikipedia , lookup
Photon polarization wikipedia , lookup
Moment of inertia wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Rotational spectroscopy wikipedia , lookup
Centripetal force wikipedia , lookup
Work (physics) wikipedia , lookup
Accretion disk wikipedia , lookup
Equations of motion wikipedia , lookup
Classical central-force problem wikipedia , lookup
Angular momentum operator wikipedia , lookup
Angular momentum wikipedia , lookup
Newton's laws of motion wikipedia , lookup
AP Physics C – Rotational Dynamics Review Torques change angular momentum (and thus usually also angular velocity). The symbol for torque is the Greek letter . Torque is given by this equation: = r × F or in terms of magnitudes, rF sin (this is what you will usually use) r is the distance to the center of spin from where the force is applied. This variable is often called the lever arm. F sin is the force component that is perpendicular to the lever arm. F sin F r If the angle is 90, then the force is perpendicular to the lever arm, the sine is one, and the equation for torque is simply: Fr You can see that the unit for torque is going to be a newton meter (nm). We leave it like that. This looks very similar to the unit for work, the joule, but it is quite different. So energy and work are in joules and torque is left in newton meters. Torque is a vector quantity, meaning it has a direction. This means that torques can cancel (like when they would cause rotations in opposite directions).. 125 N is applied to a nut by a wrench. The length of the wrench is 0.300 m. What is the torque? Fr 125 N 0.300 m A torque of 857 Nm is applied to flywheel that has a radius of 45.5 cm. What is the applied force? Fr 37.5 Nm F r 1 857 Nm 0.455 m 1880 N You push on the door as shown in the drawing. What is the torque? rF sin 330 N 330 N 1.5 m sin55.0 1.5 m 410 Nm 55.0 Torques Due to Wrapped Strings: Frequently, the AP exam includes problems in which a string is wrapped around an object (kind of like a yo-yo) and then is pulled. If the string does not slip, the torque is the tension at that point times the radius of the object. T r τ = Tr Multiple Torques: What happens if two or more torques act on an object at the same time? Two forces are applied to the object in the drawing to the right. The object is free to rotate about the spin axis. Both cause a torque. F1 causes a CCW (counter clockwise) rotation around the axis. F1 spin axis r1 r2 F2 causes a CW (clockwise) rotation around the axis. You are free to make either CCW or CW the positive F2 direction.. In problems where an object will rotate (e.g., a rolling object), it is usually most convenient to choose torques to be positive when in the direction of the rotation. In the problem at right, if CW is positive then, the sum of the two torques would be: Equilibrium and Torque: =1 2 F2r2 F1r1 If an object is in rotational equilibrium, it is either at rest or it is rotating at a constant angular velocity (ω) and with constant angular momentum (L): If object is in rotational equilibrium, the net torque about any axis is zero. This means that the sum of the torques acting on the object must be zero. =0 Static equilibrium exists when an object has no motion, either linear or angular. There are two conditions which must exist in order to have your good old static equilibrium: The net force must be zero and the net torque must be zero. F=0 =0 Two metal orbs are attached to a very lightweight rigid wire. They are suspended from a rigid point on the overhead as shown. The system does not move. Calculate the distance from the suspension line to the center of gravity on the right sphere. Since the system is at rest, the sum of the torques and the sum of the forces must be zero. Let’s look at a FBD and a drawing showing the two torques: Without using the torque equilibrium, we could not solve 4.0 kg 1.0 kg F 45.0 cm r1 ? r2 m1 g m2 g the problem. The sum of forces would simply tell us that the m1 gr1 m2 gr2 upward force would be equal to weight of the two balls. Using torque, however, allows us to solve the problem. All we have to do is add up the torques. There is no torque due to the support force, F, since it acts at the location of the pivot (so the lever arm is zero). Meanwhile, since the other torques are due to the force of gravity/weight, which always acts at an object’s center of mass, we have: 1 2 0 r2 m1gr1 m2 gr2 0 1.0 kg 0.45 m 4.0 kg m2 gr2 m1gr1 0.11 m or 11 cm r2 m1 gr1 m2 g Moment of Inertia: The rotational analog to mass is called moment of inertia (I). Just as torques are measured relative to some point (usually the axis of rotation), so are moments of inertia. Here is the formula to find an object’s moment of inertia. I = mr2 or I = ∫ 𝒓 2 dm Most of the time, moments of inertia will be provided to you for objects other than point masses, and their moments of inertia are easily calculated as mr2. If you have several items that are rigidly connected (like a block attached to a rod attached to a disk), the total moment of inertia is simply the sum of the moments of inertia of each individual item. Here are a couple of common moments of inertia you might want to know. ½ mr2 2 1⁄ 12 mL 1⁄ mL2 3 mr2 mr2 Uniform Disk About Axis Through Center: Thin Rod About Its Center: Thin Rod About An End: Point Mass About Radius r: Thin, Hollow Ring of Radius r: The parallel-axis theorem allows us to calculate the moment of inertia of an object through an axis parallel to, and a distance D from, an axis through its center of mass as follows: (parallel axis theorem) I = Icm + mD2 Non-Equilibrium and Torque: If an object has a non-zero net torque, then it experiences an angular acceleration (α) given by, = Iα This is the rotational analog to Newton’s 2nd Law (Σ F = ma). If the angular acceleration is constant, you can apply rotational kinematics equations that are just like those for constant acceleration linear motion but with linear quantities replaced with rotational analogs (see end). Work Due to Torques: Just as work is done when a force is applied over a displacement, work is also done when torques are applied over an angular displacement. W = ∫ 𝝉 𝒅𝜽 Power can also be calculated analogous to linear motion (where P = Fv). For rotations, P = τω Kinetic Energy of Rotating Objects: not also translating, its kinetic energy is given by, KErot = ½ Iω2 When an object is rotating about a fixed axis and is Angular Momentum: The rotational analog to linear momentum is angular momentum (L). The general equation for angular momentum is, L = r × p or in terms of magnitudes, L = mvr sin θ (this is what you will usually use) Note that angular momentum is always measured relative to some reference point. In the above equation, r sin θ is the perpendicular distance between a line along the direction of motion and the reference point/axis of rotation. For an object moving in a circular path of radius r, its angular momentum is simply L = mvr. For rigid objects rotating about a fixed axis (with no translation of the center of mass), L = Iω If an object is both rotation and translating, its angular momentum is due to both. L = Lcm + Lrot = mvcmr sinθ + Icmω Torque and angular momentum are related as follows: τ = dL/dt Conservation of Momentum: When the net torque on an object is zero, its angular momentum is conserved (constant). This is why, for example, an ice skater spins faster when he/she pulls in arms to decrease moment of inertia, I. The angular momentum, Iω is constant, so if I goes down, angular velocity (ω) must go up. Likewise, if the net torque on a system of objects is zero, then the total angular momentum of the system is conserved. This allows us to solve problems involving collisions. For example, if a person runs and jumps on a merry-go-round that is initially at rest, the initial angular momentum relative to the axis of the merry-go-round is due only to the running person. After the collision, the angular momentum is conserved and is due to both the person and the merry-go-round rotating around the axis. Li = Lf (so long as net torque is zero; this is true for collisions) Rolling Objects: When an object rolls, it has both translational (linear) motion and rotational motion. Ordinarily, you divide this motion into the translational motion of the center of mass and the rotational motion around the center of mass (particularly if the object rotates about an axis through the center of mass). KE = KEtrans + KErot = ½ mv2cm + ½ Icmω2 L = Lcm + Lrot = mvcmr + Icmω (a) Rolling without slipping: If an object rolls without slipping, the linear motion of its center of mass is related to the rotation motion of the object as follows: vcm = rω and acm = rα and Δs = rΔθ When an object rolls without slipping, it either experiences no friction or static friction. Typically, whether an object can roll without slipping will depend on whether there is sufficient friction to prevent slipping. (b) Rolling with slipping: An object will roll with slipping if it rotates either too fast or too slow relative to the linear motion of its center of mass (so the non-slip conditions above do not hold). An object rolling with slipping will typically be subject to kinetic friction which will tend to move the object closer to non-slip conditions (so if it was rotating too fast, the friction will cause a torque that will tend to slow the rotational rate until slipping stops). Linear Motion (mass) m (velocity) v (acceleration) a (position) x (force) F (momentum) p ↔ Rotational Motion I (moment of inertia) ω (angular velocity) α (angular acceleration) θ (angle) τ (torque) L (angular momentum) Other key relationships: 𝜔 = dθ/dt α = dω/dt τ = dL/dt 2 2 2 For constant α: ω = ω0 + αt, Δθ = ω0t + ½ αt , ω = ω0 + 2αΔθ