* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Relevant Equations
Old quantum theory wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Four-vector wikipedia , lookup
Hamiltonian mechanics wikipedia , lookup
Angular momentum operator wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Coriolis force wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Faster-than-light wikipedia , lookup
Laplace–Runge–Lenz vector wikipedia , lookup
Brownian motion wikipedia , lookup
Photon polarization wikipedia , lookup
Fictitious force wikipedia , lookup
Jerk (physics) wikipedia , lookup
Derivations of the Lorentz transformations wikipedia , lookup
Length contraction wikipedia , lookup
Specific impulse wikipedia , lookup
Lagrangian mechanics wikipedia , lookup
Analytical mechanics wikipedia , lookup
Matter wave wikipedia , lookup
Hunting oscillation wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Routhian mechanics wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Classical mechanics wikipedia , lookup
Velocity-addition formula wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Equations of motion wikipedia , lookup
Relativistic angular momentum wikipedia , lookup
Classical central-force problem wikipedia , lookup
Particle Rectilinear Motion s = position ds dt dv d 2 s a dt dt 2 ads vdv v Constant Acceleration Equations v vo ac t 1 2 ac t 2 v 2 vo2 2a c s s o s s o vo t Projectile Motion Horizontal Motion v x vo x x xo vo x t Vertical Motion v y vo y gt y y o vo y t v y2 vo y 2 1 2 gt 2 2 g y yo Particle Curvilinear Motion x,y,z coordinates v x x v y y v z z a x x a y y a z z n, t, z coordinates v = velocity (always tangent to the path) at = tangential acceleration an = normal acceleration ρ = radius of curvature v s at v v an dv ds v2 a at2 a n2 3 dy 2 2 1 dx d2y dx 2 r, θ, z coordinates vr = radial velocity vθ = velocity in theta direction (perpendicular to ur vector) v r r v r v z z a r r r 2 a r 2r a z z Relative Motion vB = absolute velocity of object B vA = absolute velocity of object A vB/A = velocity of object B relative to object A aB = absolute acceleration of object B aA = absolute acceleration of object A aB/A = acceleration of object B relative to object A v B va v B / A aB a A aB / A Kinetics for System of Particles W = weight (newtons or pound force) Newtonian (x,y,z coordinates) W mg Fx = sum of forces in the x-direction Fy = sum of forces in the y-direction Fz = sum of forces in the z-direction F ma F ma F ma x x y y Newtonian (n, t, z coordinates) Ft = sum of forces in the tangential direction (to the path) Fn = sum of forces in the normal direction (perpendicular to the tangent of the path) F F F t mat n man z 0 Newtonian (r, θ, z coordinates) Fr = sum of forces in the radial direction Fθ = sum of forces in the theta direction (perpendicular to the radial direction) F ma F ma F ma r z r z Work/Energy Theorem: U1-2: Work of a non-conservative variable force ΔT = change in kinetic energy ΔVg = change in potential energy ΔVe = change in potential energy (for a spring) g = gravitational constant (9.81 meters per second squared or 32.2 feet per second squared) h = height above or below reference datum (can be positive or negative) k = spring constant s = displacement from unstretched spring length U 1 2 F dr r2 r1 1 2 mv 2 V g mgh T 1 2 ks 2 U 12 T Vg Ve Ve Conservation of Energy (no non-conservative forces): T1 V g1 Ve1 T2 V g 2 Ve 2 Principle of Linear Impulse and Momentum mv1 = Initial momentum mv2 = final momentum mv1 Fdt mv 2 mv x1 Fx dt mv x 2 mv y1 Fy dt mv y 2 mv z1 Fz dt mv z 2 Conservation of Linear Momentum for a system of particles m v m v i i 1 i i 2 Central Impact Coefficient of restitution, e: ratio of the restitution impulse to the deformation impulse vB 2 = velocity of object B after impact v A 2 = velocity of object A after impact v B 1 = velocity of object B before impact v A 1 = velocity of object A before impact e v B 2 v A 1 v A 1 v B 1 Oblique Impact Along line of impact: use coefficient of restitution equation above Along plane of impact: use conservation of linear momentum Angular Impulse and Momentum for a system of particles: r mv1 r F dt r mv 2 Conservation of Angular Momentum: r mv1 r mv2