Download OPTION D: CORE ENVIRONMENTAL CHEMISTRY

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Discovery and development of ACE inhibitors wikipedia , lookup

Pharmacokinetics wikipedia , lookup

Discovery and development of tubulin inhibitors wikipedia , lookup

Bad Pharma wikipedia , lookup

Discovery and development of non-nucleoside reverse-transcriptase inhibitors wikipedia , lookup

Nicotinic agonist wikipedia , lookup

Pharmacogenomics wikipedia , lookup

Discovery and development of antiandrogens wikipedia , lookup

Discovery and development of beta-blockers wikipedia , lookup

NK1 receptor antagonist wikipedia , lookup

Discovery and development of proton pump inhibitors wikipedia , lookup

Psychedelic therapy wikipedia , lookup

Discovery and development of cephalosporins wikipedia , lookup

Prescription drug prices in the United States wikipedia , lookup

Medication wikipedia , lookup

Neuropharmacology wikipedia , lookup

Drug interaction wikipedia , lookup

Prescription costs wikipedia , lookup

Pharmaceutical industry wikipedia , lookup

DNA-encoded chemical library wikipedia , lookup

Urban legends about drugs wikipedia , lookup

Pharmacognosy wikipedia , lookup

Psychopharmacology wikipedia , lookup

Neuropsychopharmacology wikipedia , lookup

Drug design wikipedia , lookup

Drug discovery wikipedia , lookup

Transcript
OPTION D HL: MEDICINES AND DRUGS
D 8. Drug action
D.8.1 Describe the importance of geometrical isomerism in drug action.
D.8.2. Discuss the importance of chirality in drug action.
D.8.3. Explain the importance of the beta- lactam ring action of penicillin
D.8.4 Explain the increased potency of diamorphine (heroin) compared to morphine.
This section studies the effect of some aspects of chemical structure on drug action:
 Stereo-isomerism: geometric and optical.
 Strain in a ring structure.
 Polarity of a molecule
Importance of geometrical (cis-trans) isomerism in drug action, e.g. cisplatin
Like in organic compounds, cis- and trans- isomerism can also occur in
inorganic transition metal complexes some of which are used in medicines.
Each isomer can have its own (or lack of) pharmacological effects.
For instance, the compound diaminedichloro platimum (II) has a square planar
geometry with bond angles of 90 and can therefore show geometrical
isomerism. The cis-isomer shown on the right, called cisplatin, can act as an
anti-cancer drug as, because of its orientation, it can bond with DNA in the
nucleus of cancer cells.
The trans-isomer, transplatin, does not have any pharmaceutical effects as the nitrogen atoms within the
molecule are too far apart to make bonds with the DNA in cancer cells.
Importance of chirality (optical isomerism) in the action of drugs
Many compounds used as medicines have chirality (the compound has two enantiomers because there is
an asymmetric atom). Natural sources of medicines (e.g. poppy) only produce one enatiomer. However,
when medicines are synthesized in laboratories often both entantiomers are produced and a racemic
mixture or racemate is obtained. A racemic mixture or racemate is an equimolar solution of both
enantiomers.
Enantiomers not only differ in the direction in which they rotate plane-polarized light (physical property)
but they also differ in one chemical property i.e. how they interact with other chiral compounds and this is
what happens in the action of drugs as many molecules in living organisms are chiral.
To be able to recognize optical isomerism or a chiral centre in drug molecules we need to extend our
ideas of what characteristics gives molecules optical activity. We already know that a carbon atom with 4
different atoms or groups bonded onto it is a chiral centre. Carbon atoms in ring structures can also be
chiral if one part of the ring on one side of the atom is different from the part of the ring on the other side.
Each side of the ring is classified a different group if, when moving around the ring from the chiral centre,
the order of atoms is different each way. It is said the chiral atom has two different views around the ring.
As the case of Thalidomide proved, each enantiomer may have
completely different physiological effects. One enantiomer of
Thalidomide alleviates morning sickness in pregnant women,
while the other enantiomer causes deformities in the limbs of the
fetus.
In the diagram to the right showing the thalomide molecule
indicate the position of the chiral carbon atom.
Other examples include:
 Ibuprofen: one enantiomer is more effective than the other.
 DOPA: this is a drug which is used in the treatment of Parkinson disease; one isomer is effective
whilst the other isomer has no physiological effect
 Fluotexine.
 Morphine: one form is analgesic, the other is not.
IB option D HL
1
The effect of stereoisomerism on the development and synthesis of drugs.
 Each enantiomer must be tested for its physiological effects.
 Modern drugs may have only one enantiomeric form instead of a racemic mixture. This achieved by
using chiral auxiliaries – see D9.
Importance of the beta-lactam ring on the action of penicillin
The reactive part of the penicillin molecule is the beta-lactam ring.
The beta-lactam is a four-membered square ring structure which contains an amide group (-CONH-) and
consists of one nitrogen atom and three carbon atoms (and two hydrogen atoms).
As a result of the sp3 hybridisation of two of the three carbon atoms and the single nitrogen atom and the
sp2 hybridisation of the third carbon atom, the preferred bond angles are 109 and 120.
However, the bond angles in the beta-lactam ring structure are only 90° this puts the beta-lactam ring
structure under strain and this makes the ring structure reactive as it easily breaks open in the amide
group, for instance, in the presence of an enzyme such as transpeptidase, to form covalent bonds with
the transpeptidase. This deactivates the enzyme that synthesizes the bacterial cell walls, thus inhibiting
the growth of bacterial cell walls. As a result water enters the bacteria cell causing it to burst due to
increased osmotic pressure.
Importance of polarity on the action of diamorphine
Diamorphine (heroin), a derivative from morphine, is the better and more potent painkiller and gives a
greater feeling of euphoria.
This is because diamorphine is less polar than morphine as it does not have the polar hydroxyl group
anymore but two non-polar ester groups. As a result diamorphine (heroin) cannot form any hydrogen
bonds and is therefore less soluble in polar substances such as water but more soluble in non-polar fatty
tissue, which makes up the central nervous system, and can therefore cross the blood-brain barrier
faster/more easily than morphine.
Lower polarity in diamorphine makes it more soluble in fatty tissue and ensure in a more rapid uptake.
Increased polarity makes a medicine more soluble in water and less so in fatty tissue.
D 9. Drug design
D.9.1 Discuss the use of a compound library in drug design.
D.9.2 Explain the use of combinatorial and parallel chemistry to synthesize new drugs
D.9.3 Describe how computers are used in drug design.
D.9.4 Discuss how the polarity of a molecule can be modified to increase its aqueous solubility and how
this facilitates its distribution around the body.
D.9.5 Describe the use of chiral auxiliaries to form the desired enantiomer.
Compound library
Compound libraries are databases which contain molecules which have been isolated or synthesized and
tested by pharmaceutical companies for possible pharmaceutical properties i.e. how they inhibit or
prevent normal biological activity of the ‘target’ molecule to stop or interrupt the development of a
disease. In the case of a painkiller the ‘target’ molecule could be a receptor.
The outcome of these tests, i.e. the pharmaceutical activity of the compound, and other biologically
relevant information are also included in the compound library. Pharmaceutical companies use such
libraries to identify ‘lead’ compound for a particular ‘target’ molecule such as an enzyme, DNA or a
receptor.
Comparison of combinatorial chemistry and parallel chemistry
Combinatorial chemistry is a technique used to synthesize quickly (and at lower cost and simultaneously)
a very large number of different but structurally related compounds (all possible combinations) from a
number of reactant molecules and screen each product for its biological activity, resulting in a
“combinatorial library”.
IB option D HL
2
Parallel synthesis involves only the synthesis of a smaller but selected group of compounds in different
reaction vessels.
Similarities between combinatorial and parallel synthesis
 Synthesis of a large number of compounds using a variety of reagents
 Fully automated
 Uses solid-phase chemistry which also involves the mix and split technique
 Products are tested for biological activity
Differences


Combinatorial synthesis
Generates large, more diverse

libraries 
“combinatorial library”.
Produces a ‘mixture’ of compounds in 
same reaction vessel
Parallel synthesis
Small focused libraries
Involves production of a highly reactive intermediate
which then reacts with the different reactants
Produces a ‘single’ product in each reaction vessel
Solid-phase chemistry
One of the techniques used to synthesize this large volume of compounds is ‘solid-phase’ chemistry in
which the reactions take place on the surface of resin beads:
 Each type of reactant molecule is bonded covalently onto a very small resin bead
 Mix and split process:
o The beads are mixed and then split into separate portions i.e. each portion has all reactants
o To each portion a different reactant is added and a reaction is allowed to occur
o The separate portions are then mixed again after which they are split into separate portion
o To each portion a different reactant is added again…
o This is repeated.
An advantage of solid-phase chemistry: When synthesis reactions are complete, the products are
removed easily from the beads by filtering off the beads and washing them. After that the products are
tested “in vitro” and “in vivo” to find out their biological activity.
Use of computers in drug design



Combinatorial libraries: databases used to search for molecules/groups with required/specific
properties. Databases also include 3D images of molecules
3D modeling software can be used to show interaction between medicine and active site on target
molecule/receptor without actually making the medicine. This also allows them to design molecules
with the perfect fit and then attempt to chemically produce them.
Evaluation of (biological/pharmacological) effects of new drugs; if the structure of a new molecule is
known the modeling software can then test its effectiveness in binding onto a receptor or enzyme.
Making medicines more soluble in water facilitating distribution
Many medicines are either non-polar or relatively non-polar molecules. If their target area in the body is
in an aqueous environment their low solubility in water, as a result of their non-polarity, will make their
uptake slow as it will take time for the medicine, after administration, to reach its target molecule.
However, if the polarity of the medicine molecule can be improved (without altering its pharmaceutical
activity) then so can its distribution around the body and therefore its effectiveness.
In the case of non-polar molecules with either acidic (carboxylic acid) or basic (amine) groups the polarity
can be increased by converting them into ionic salts by adding either alkalis or acids.
Examples are soluble aspirin and fluoxetine hydrochloride (Prozac®).
Aspirin which is insoluble in water and which has a carboxylic acid group can be made into an ionic salt
by reacting it with a strong alkali such sodium hydroxide to form a soluble sodium salt as shown by the
equation below:
IB option D HL
3
C6H4(OCOCH3)COOH + NaOH → C6H4(OCOCH3)COONa + H2O
The structure of aspirin in the data booklet is the structure of the insoluble aspirin. The molecule can still
act as an analegesic but can now be distributed more effectively around the body.
In the case of fluoxetine hydrochloride (Prozac®) the structure in the data booklet is the structure of the
soluble ionic salt, hydrogen chloride salt, and this is usually the form in which it is administered or
prescribed.
Fluoxetine hydrochloride (Prozac®) is produced by reacting a strong acid such as hydrochloric acid with
the secondary amine group in fluoxetine (see structure below). This reaction is similar to the reaction
between ammonia and hydrochloric acid, a reaction you are very familiar with. In both reactions the
nitrogen atom donates its non-bonding pair to the hydrogen ion forming a basic cation to which the
chloride ion is attracted.
Use the structure below to write an equation for the formation of fluoxetine hydrochloride from fluoxetine.
Using optical isomerism in drug design: use of a chiral auxiliary
If enantiomers in a racemate have different physiological activities it is necessary to isolate the desired
enantiomer from the mixture. However, this is a wasteful process and it is therefore better to synthesize
directly the desired enantiomer by preventing the synthesis of the other enantiomer. This can be
achieved by using a chiral auxiliary.
A chiral auxiliary is an entiomer itself and is used to convert a non-chiral reacting molecule into just one
enantiomer i.e. the enantiomer with the desired pharmaceutical effect. It does that by attaching itself to
the non-chiral molecule to create the stereochemical conditions necessary to force the reaction to follow
a certain path i.e. the production of the desired enantiomer and not the other enantiomer.
Once the new desired molecule has been formed, the auxiliary can be taken off and recycled.
A product of this type of synthesis is Taxol, an anti-cancer drug.
D 10. Mind-altering drugs
D 10.1 Describe the effects of lysergic acid diethylamide (LSD), mescaline, psilocybin and
tetrahydrocannabinol (THC).
D 10.2 Discuss the structural similarities and differences between LSD, mescaline and psilocybin.
D 10.3 Discuss the arguments for and against the legalization of cannabis.
Examples of mind-altering drugs: lysergic acid diethylamide (LSD), mescaline, psilocybin and
tetrahydrocannabinol (THC) which is found in cannabis.
Short term effects of lysergic acid diethylamide (LSD), mescaline, psilocybin
All three cause hallucinations i.e. hearing of voices and seeing of images which appear realistic but which
do not exist i.e. there is no stimulus for them. The mind-altering drugs disrupt the activity of the brain
transmitter serotonin which is involved in the processing of hearing and sight.
In addition, each hallucinogenic also causes their own effects.
IB option D HL
4
lysergic acid diethylamide
(LSD),
 Psychological dependence
 Effects of LSD may be
experienced a year or more
later after last use i.e.
“flashbacks”
mescaline




Nausea
Trembling
Liver damage
Reduced appetite
psilocybin



Feelings of relaxation
Develop tolerance
Sense of well-being
Similarities and differences in the structures of LSD, mescaline and psilocybin
similarities
differences
 benzene ring
 amine group(s)
LSD
 indole ring = a benzene ring to which is attached (fused) a fivemembered ring with a nitrogen atom and a double carbon-carbon bond
(see data booklet table 20)
 amide
 2 alkene - double bonds
 2 amine groups: a secondary amine and a tertiary amine
mescaline  no indole ring
 primary amine
 ether (- 3 groups)
psilocybin  indole ring
 secondary amine
 has an ionic end/tertiary amine ion
 a phosphate group
Effect of cannabis
The active ingredient in cannabis is tetrahydrocannabinol (THC) and this has the following effects:
 loss of sense of time
 confusion
 light-headedness
 sense of floating
 loss of inhibitions
 euphoria
 mental relaxation
Structure of cannabis
Phenol group, ether and a double carbon-carbon bond.
Legalization of cannabis







for
no more or less damaging than other ‘legal’
drugs e.g. alcohol, tobacco
offers pain relief from certain diseases such as
AIDS and cancer
relieves nausea in chemotherapy
relieves tension and anxiety in terminally ill
patients
helps decrease pressure inside eyeball in
patients suffering from glaucoma
better control of quality of cannabis
reduction of crime
IB option D HL




against
harmful effects:
o may suppress immune system
o respiratory ailments
reduces ability to drive
causes dependence
the possibility of cannabis users moving on to
harder drugs.
5