Download The Preparation of an Explosive: Nitrogen

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Chemical reaction wikipedia , lookup

Transition state theory wikipedia , lookup

Catalytic reforming wikipedia , lookup

Rutherford backscattering spectrometry wikipedia , lookup

History of chemistry wikipedia , lookup

Hypervalent molecule wikipedia , lookup

Chemistry: A Volatile History wikipedia , lookup

Isotopic labeling wikipedia , lookup

Click chemistry wikipedia , lookup

Stoichiometry wikipedia , lookup

Unbinilium wikipedia , lookup

Chemical bond wikipedia , lookup

Isotope analysis wikipedia , lookup

Freshwater environmental quality parameters wikipedia , lookup

Nonmetal wikipedia , lookup

List of phenyltropanes wikipedia , lookup

Bioorthogonal chemistry wikipedia , lookup

IUPAC nomenclature of inorganic chemistry 2005 wikipedia , lookup

Strychnine total synthesis wikipedia , lookup

Eutrophication wikipedia , lookup

Plant nutrition wikipedia , lookup

History of molecular theory wikipedia , lookup

Iodine wikipedia , lookup

Human impact on the nitrogen cycle wikipedia , lookup

Metalloprotein wikipedia , lookup

Atomic theory wikipedia , lookup

Nitrogen wikipedia , lookup

Nitrogen dioxide poisoning wikipedia , lookup

Halogen wikipedia , lookup

Transcript
The Preparation of an Explosive: Nitrogen
Triiodide Ammoniate
Yuri D. Blake
Department of Chemistry & Physics, Georgia College & State University,
Milledgeville, GA 31061
Conducted on: September 16, 2008
CHEM 3010L
under Dr. Julia K. Metzker
Abstract:
This lab involved the soaking of iodine crystals in concentrated ammonia,
then drying of the compound to demonstrate the instability and sensitivity of the newly
produced nitrogen triiodide ammoniate compound by detonating it with the slightest of
force producing a gust of purple iodine vapor and a loud snapping noise.
Introduction:
Nitrogen triiodide is a highly reactive compound that when barely
agitated, will explode in its unstable state; it is produced by the reaction of solid iodide
crystals and concentrated ammonia, in which the iodine atoms are displaced by the
hydrogen atoms as shown Fig 1.11. It is not a very practical compound do to its high
instability and cost. Once the nitrogen triiodide is produced it remains stable until it is
dry to form the nitrogen tri-iodide monoammine NI3·(NH3).
3I2 + NH3 -> NI3 + 3HI
Fig 1.1
Spreading it out or making small piles ensures that the explosion will take place
effectively. The explosion involves the release of nitrogen and iodine gases, producing a
purple smoke and a snapping/popping noise. Nitrogen-nitrogen bonding is highly
unstable as is nitrogen bonded to other oxidizing agents. The explosion in the
experiment occurs due to nitrogen’s weak bonging, except in cases in which it is bonded
to hydrogen, which makes nitrogen highly reactive. Due to these characteristics, the
reaction is thermodynamically favorable to the formation of N2 1. Other nitrogen halides
that have been synthesized are NF3 and NCl3, which are also volatile, but NF3 is more
stable due to the low fluorine-fluorine bond energy and short bonds.
The first suggestion of the formula for nitrogen iodide was given by Bunsen in
1852, to be NH3 ∙ NI3, which supports the decomposition and reaction that takes place. In
1
1921, Eggert investigated this decomposition and came up with an equation to support
the detonation that occurs in the reaction by the equation in Fig 1.2.3
8 NH3 ∙ NI3  5N2 + 6NH4I + I2
Fig. 1.2
During the reaction, the small central nitrogen atom is being crowded by the large iodine
atoms leading to their unwanted non-bonded repulsive interactions as demonstrated in
Fig 1.3 below:
Fig 1.3 The small central nitrogen atom is congested by the large
iodine atoms, causing their unwanted repulsions.4
Experimental: One hundred three milligrams of solid iodine was placed in a 10-mL
beaker equipped with a magnetic stirring bar. The beaker was set on the magnetic
stirring hot plate and placed under the hood. One milliliter of concentrated ammonia was
administered to the beaker and allowed to stir in suspension for five minutes. To isolate
the product, the compound was spread out over several pieces of filter paper and a paper
towel. The material was allowed to dry for about one hour. The reddish brown solid
remaining formed the nitrogen triiodide monamine and at a distance, the solid was struck
with the end of a yard stick. After the strike, the material immediately made a loud snap
and a gust of purple, iodine gas was released.1
2
Data: While conducting the experiment, several observations were made. The
iodine was a deep purple crystal, which stains easily. Carefully added concentrated
ammonia was added to the iodine, under the hood to prevent absorption or inhalation,
which was a greenish color. The iodine reacted with the ammonia and was allowed to
dry. While this occurred, the solution set in to a dark purplish color in its stable state and
began to turn reddish brown as the ammonia evaporated off. Once the solution dried, the
NI3 was immediately instable.
NI3 explodes
Fig 3.
One mole of N2 is created at 944 kJ mol-1 and 3 I-I at 151 kJ mol-1 producing 1397 KJ
mol-1. The change in energy is equal to the enthalphy of the reactants deducting the
enthalphy of the products, giving the highly exothermic reaction (Fig. 3) and overall
energy change of -437 kJ mol-1. 5
Results and Discussion: The iodine reacts with ammonia to produce the nitrogen
triiodide ammoniate in its stable form. As it dries, the compound loses its stability due to
the formation of the nitrogen gas, and causes an easy explosion. In the reaction, the
iodine atoms are displacing the hydrogen atoms in ammonia, as shown.
Nitrogen triiodide is highly unstable compound due to the weak bonds of the nitro
gen to the iodine atoms and the size difference (nitrogen cannot hold the iodine atoms).
The compound was able to be transported and handled while in its stable form, but as it
began to dry, it became much more sensitive as it became more and more unstable. Once
the compound is dry and therefore unstable, the electrons of iodine atoms are forced
3
together causing an unwanted repulsion (lone pair-lone pair repulsion), and therefore, the
instability. The compound detonated upon striking and sounded off with a snap. A gust
of purple iodine gas was released. A reddish orange burnt residue remained. (Fig 4)
Fig 4. Explosion conducted by Tiffany Shoham and Yuri Blake
Conclusion: This experiment was conducted successfully because the explosion did
occur to prove our sample was prepared correctly. Although this compound is easily
prepared, it is very dangerous and should be handled with caution. Future experiments
may include repeating this laboratory and making the drying process more efficient by
using larger or smaller quantities of sample or drying materials, to yield better explosion.
References:
1. Singh, M. Preparation of an Explosive: Nitrogen Triiodide Ammoniate.
Microscale Inorganic Chemistry: A Comprehensive Laboratory
Experience; J. Wiley: New York 1991; pp. 199-201
2. Chen, P.S. Entertaining Educational Chemical Demonstrations; Chemical
Elements Publishing Co.: Camarillo, Ca 1974
3. Meldrum, F.R. "The Thermal Decomposition of Nitrogen Iodide" Bristol University
The Royal Society: 1940. p410
4. Cotton, Simon. “Nitrogen Triiodide” http://www.chm.bris.ac.uk/motm/ni3/ni3j.htm
5 “Type of Explosives” <http://www.chem.shef.ac.uk/chm1312001/chb01ajb/types_of_explosives.html>
4
Acknowledgements: I would like to thank my lab partner Tiffany Shoham. I would also
like to thank Mehul Patel , Evan White and Leah Corley for helping me to revise my
work.
5