Download Poster PDF (4.4mb)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Theoretical and experimental justification for the Schrödinger equation wikipedia, lookup

History of quantum field theory wikipedia, lookup

Canonical quantization wikipedia, lookup

Quantum state wikipedia, lookup

Aharonov–Bohm effect wikipedia, lookup

Magnetic monopole wikipedia, lookup

T-symmetry wikipedia, lookup

Ferromagnetism wikipedia, lookup

Magnetoreception wikipedia, lookup

Nitrogen-vacancy center wikipedia, lookup

EPR paradox wikipedia, lookup

Quantum group wikipedia, lookup

Hydrogen atom wikipedia, lookup

Symmetry in quantum mechanics wikipedia, lookup

Relativistic quantum mechanics wikipedia, lookup

Spin (physics) wikipedia, lookup

Tight binding wikipedia, lookup

Bell's theorem wikipedia, lookup

Molecular Hamiltonian wikipedia, lookup

Ising model wikipedia, lookup

Lattice Boltzmann methods wikipedia, lookup

Quantum chromodynamics wikipedia, lookup

Topological quantum field theory wikipedia, lookup

Instanton wikipedia, lookup

Dirac bracket wikipedia, lookup

Scanning tunneling spectroscopy wikipedia, lookup

Transcript
Realizing the Harper Hamiltonian
with Spin Mixtures of Ultracold Atoms
Colin Kennedy, Georgios Siviloglou, Hiro Miyake, Cody
Burton, Wolfgang Ketterle
MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
The Harper Hamiltonian
Motivation
Interesting states of matter (e.g. integer and fractional quantum Hall states, topological
insulators, etc.) arise in systems of interacting, charged particles in a magnetic field. Can
such states be realized in a well-controlled, defect free environment with a neutral
quantum gas?
4
2
1
5
Model of charged particles on a lattice in a magnetic field [9]:
H=
Kei
hm,ni
m,n
3
X
=
Z
m,n
â†m,n âm,n + h.c.)
Rn
Rm
qA · ds/~
Spectrum is fractal and is known as
Hofstadter’s Butterfly [10]:
Much work has been done on realizing effective magnetic fields - in a bulk gas [1,2] and
on a lattice as well [3-5].
Realizing a system with a large ratio of flux quanta to particle number remains an open
question addressed by this work [6,7] and work in Munich [8]
On a ~1 A lattice, magnetic fields of
~10,000 T are necessary for flux densities
of order 1
The band structure is topologically non-trivial, e.g. for a=1/2 the ground band has
Chern number 1.
The Main Idea for Uniform Flux
Emulating the Quantum Spin Hall Effect
A uniformly tilted lattice suppresses normal tunneling in the x-direction
Uniform energy offset can be made with magnetic field gradient, so different magnetic
moments see different tilts
Resonant tunneling is re-established using a pair of far detuned Raman lasers,
imprinting a phase on each link with the y-momentum transfer
⌦
K=
2
Z
d2 r w⇤ (r
= K0 e±i
R)e±i
k·r
Rm,n ⌥ ax̂)
(a)
w(r
Ω
k1,
k2,
1
m,n
EGap
dx w⇤ (x)e±ikx x w(x
dy w (y)e
±iky y
(b)
w(y)
k2,
2
n
2
(c)
+3
x
3
The momentum defines the gauge
1
y
y
1
~
A = (kx x + ky y) x̂
a
Width (μm)
y
(a)
Tunneling in the tilt direction can only
happen on Raman resonance, so an in situ
expansion
measurement
reveals
the
presence of tunneling. We realize the
Hamiltonian with a=1/2.
Width (µm)
J
Ke±i
Experimental Realization
16
m,n
Ke±i
+
x
1
m+1,n
1
y
HSOC
2 x+
y
3 ... m
2
x
y
500
1000
Raman Frequency, δω/2π (Hz)
1500
60
30
0
0
0.4
0.8
Raman Int. (2Ω/Δ)
8
1300
1800
Observation of laser-assisted tunneling!
2000
2200
2400
2600
Raman Frequency, δω/2π (Hz)
2800
Four-photon, nearest-neighbor and twophoton next-nearest -neighbor tunneling
The tunneling rate scales non-linearly with the Raman drive, and can be exactly derived
in the mapping from the Wannier-Stark problem to the Harper Hamiltonian. We
observe qualitative agreement.
J = Jy J0 (
i
=
2⌦
y0
x1
J1 (
x)
+i
x
0 dJ1 ( x )
x1
d x
x)
x0
sin
✓
ki a
2
◆
⇣ 2⌦ ⌘
K = Jx J1
⇣ 2⌦ ⌘
0.6
0.4
0.2
1200
In the tight-binding limit:
J = Jy J0
k2,ω2
k1,ω1
i~)kx + 2px ky y
◆
Ke-i
ˆz
m,n
Each spin independently realizes a quantum Hall state with opposite Chern numbers.
The total spin is conserved, as such the system is protected by a Z topological index.
Add interactions with a confining
lattice in the 3rd dimension. Near
the Mott transition, the system may
exhibit bosonic Laughlin states [13].
1064 nm, kLat
|
=
+
–
790 nm @28.7˚
kSup=kLat/3
A
B
C
A
0.0
0
600
1
2
3
4
Raman Intensity H2WêDL
0
0
2
Raman Intensity (2Ω/ )
4
5
B
C
|
Top, superlattice implementation of the tilted
lattice. Bottom, the lowest band structure for a=1/2.
With interactions, possible spin drag
measurements [14], interaction induced cyclotron motion, and much
more!
References
0.8
Jn H2WêDL
y0
m,n
1.0
Corrected Width Squared (μm2)
K=⌦

~
=
(2px x
2ma
Couple spin states with microwave
drive. If time-reversal symmetry is
preserved, the system should
exhibit Z2 topological index [11,12].
8
1000
1100
1200
Raman Frequency,
π (Hz)
✓
Superfluid dominated by nextnearest-neighbor interactions
8
9
Kei
Find the ground state of the system:
Hofstadter’s Butterfly
12
0
|
Future Directions
4γ
16
10
12
y
2γ
10
10
14
18
Lattice Depth (ER)
2 x+2
k2,ω2
|
It can be expressed by a term in
y
y
y
(b)
20
6
+2
x
2
= mkx a + nky a
2 x+3
y
the Hamiltonian:
Corr. Width Sq. (μm2)
m,n
k1,
Width (μm)
... ⇥
⇤
...
Z
k1,ω1
This realizes an Abelian form of
spin-orbit coupling that does not
require near resonant lasers.
a) . . .
Width (μm)
⌦
K0 =
2
Z
~
A = (kx x + ky y) x̂ ˆz
a
2
Both x- and y- momentum needed!
Changing
direction
of
the
momentum transfer changes the
sign of the gauge potential:
[1] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Science 292, 476 (2001).
[2] Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto, and I. Spielman, Nature 462, 628 (2009).
[3] K. Jimenez-Garcia, L. J. LeBlanc, R. A. Williams, M. C. Beeler, A. R. Perry, and I. B. Spielman, Phys. Rev. Lett. 108, 225303 (2012).
[4] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Phys. Rev. Lett. 107, 255301 (2011).
[5] J. Struck, M. Weinberg, C. Ölschläger, et al., ArXiv e- prints (2013), arXiv:1304.5520 [cond-mat.quant-gas].
[6] H. Miyake, G. A. Siviloglou, C.J. Kennedy, W. C. Burton, and W. Ketterle, (2013), arXiv:1308.1431 [cond-mat.quant-gas].
[7] C.J. Kennedy, G. A. Siviloglou, H. Miyake, W. C. Burton, and W. Ketterle, (2013), arXiv:1308.6349 [cond-mat.quant-gas].
[8] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 arXiv:1308.0321 [cond-mat.quant-gas].
[9] P. G. Harper, Proceedings of the Physical Society. Section A 68, 874 (1955).
[10] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[11] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[12] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
[13] A. S. Sorensen, E. Demler, and M. Lukin, Phys. Rev. Lett. 94, 086803 (2005).
[14] R. A. Duine and H. T. C. Stoof, Phys. Rev. Lett. 103, 170401 (2009).