* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download EEA - unece
Emissions trading wikipedia , lookup
General circulation model wikipedia , lookup
Public opinion on global warming wikipedia , lookup
100% renewable energy wikipedia , lookup
Open energy system models wikipedia , lookup
Kyoto Protocol wikipedia , lookup
Climate change and poverty wikipedia , lookup
Economics of global warming wikipedia , lookup
Climate change in New Zealand wikipedia , lookup
Energiewende in Germany wikipedia , lookup
Views on the Kyoto Protocol wikipedia , lookup
Decarbonisation measures in proposed UK electricity market reform wikipedia , lookup
Climate change mitigation wikipedia , lookup
Climate change in the United States wikipedia , lookup
Years of Living Dangerously wikipedia , lookup
Politics of global warming wikipedia , lookup
2009 United Nations Climate Change Conference wikipedia , lookup
Economics of climate change mitigation wikipedia , lookup
Low-carbon economy wikipedia , lookup
IPCC Fourth Assessment Report wikipedia , lookup
Carbon Pollution Reduction Scheme wikipedia , lookup
Business action on climate change wikipedia , lookup
German Climate Action Plan 2050 wikipedia , lookup
Mitigation of global warming in Australia wikipedia , lookup
TFIAM meeting 27 May 2005 Berlin EEA scenario 2005 project : Low greenhouse gas emission pathways Presentation by Hans Eerens EEA Topic Centre Air and Climate Change Netherlands Environmental Assessment Agency (MNP) It is not most important to predict the future, but to be prepared for it Perikles (about 500-429 b. Chr.) 1. Introduction, methodology 2. Energy and GHG projections 3. Regional air quality, emission trend and costs 2030 4. Urban background trend (PM10, NO2, SOMO-35) 5. Street increment (PM10, NO2) ETC/ACC partners and others involved: • RIVM: IMAGE/TIMER/FAIR/EUROMOVE models, global scenarios, climate effects, coordination • NTUA: PRIMES/GEM-E3/PROMETHEUS models, European energy system • IIASA: RAINS model, European air quality • DNMI: EMEP model • AEAT: non-CO2 GHGs and non-energy CO2 emissions • IPTS: POLES model, technology variants • AUTH: OFIS, OSPM model, transport & urban Air Quality • NILU: Air Pollution State & policies • CCE: Air pollution effects on ecosystems/critical loads • EEA: project guidance, links with issues other than air and climate change ETC/ACC SoEOR2005 subreport 6 Introduction Objectives: •Explore air pollution and climate change trends and projections using 3 scenarios: –Long-Range Energy Modelling (LREM) –Low greenhouse gas Emission Pathways (LGEP) –Plus variants •Target assessment on possible use for EU’s post-2012 debate SoEOR2005: flow chart of models used M Economy GEM-E3, PROMETHEUS PRIMES Transport Agriculture AEA-T model COPERT III, TREMOVE, TREND RAINS Emissions CO2 (Europe) CH4, N2O, HFC, PFC, MERLIN SF6 (Europe) CO2 Permit EMEP OFIS Price OPSM POLES TIMER FAIR Sinks CO2, CH4, N2O, HFC, Regional concentration:SO2, NO, NH3, PM, O3 Urban conc. PM, NO2, O3 PFC, SF6 Energy Price CC impacts IMAGE WaterGap AQ impacts Street increments Focus air pollution assessment: • Emission/effects/costs change between 2020 and 2030 assuming: – – – – – No climate change policies Increased climate change policies Different economic growth path High renewable/biomass ambition Increase/decrease use of nuclear energy Emission/activity due to various agricultural scenario’s: – CAP reform – Animlib (reduced border protection for pig & poultry, dairy liberalization) – Best environmental practice Data availability and dissemination • • • • • SoEOR2005 report SoEOR2005 sub reports SoEOR2005 technical papers Articles SoEOR2005 Scenario information platform (web-based application, indicator based country specific information) including maps • presentations LREM and LGEP emissions compared to SRES scenarios CO2eq conc (ppmv) 1300 1100 900 700 500 300 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 year baseline 550mitigation A1B A2 B1 B2 Global development in energy use 1980-2100: hydropower, non-thermal electricity, traditional biofuels, modern biofuels, natural gas, oil and coal. Left baseline (1170 EJ by 2100), right LGEP (730 EJ by 2100) Permit prices assumed CAFE-KR SEP SEP-LE Assumed permit price at EU-level1 Year SEP SEP-LE Assumed global permit price Euro (2000)/ton CO2 2010 2015 2020 2025 2030 2040 2050 2075 2100 Low 6 8 10 10 10 medium 12 16 20 20 20 - High 18 24 30 30 30 12 20 30 50 65 - 6 6 20 40 55 - 5 6 25 45 60 105 115 165 190 2 1 15 35 50 80 95 105 105 Projected global energy investment 2000-2050 Investments in respectively energy savings, electricity, modern biofuels and fossil fuel. Left baseline (4400 thousand million €/year by 2100), right LGEP (4600 thousand million €/year by 2100 Global energy investments LGEP 1990-2050 3000 3000 2500 2500 Billion (1995) $ 2000 1500 1000 500 2000 1500 1000 500 0 0 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 fossil modern biofuels electricity savings 19 90 19 94 19 98 20 02 20 06 20 10 20 14 20 18 20 22 20 26 20 30 20 34 20 38 20 42 20 46 20 50 Investment billion $(1995) Global energy investments baseline 2000-2050 fossil modern biofuels electricity savings Past and projected prices of fossil fuels and electricity 1970-2050 Fossil prices prices baseline and LCEP 1970-2050 Left axis oil prices per barrel, right axis gas and coal prices per GJ 48 8 45 7 40 Electricity-residential Baseline 35 32 5 Baseline 24 4 Oil 3 16 Gas Baseline 30 25 Coal 0 1980 1990 2000 year 2010 2020 2030 2040 15 10 1 5 0 0 1970 2050 Oil-transport 20 LCEP 8 1970 2 $(1995)/Gj 6 Prices $(1999)/GJ $(1999)/barrel start of year 40 OECD End-use costs (including tax) 1971-2050 LCEP Coal-industrial Baseline 1980 1990 2000 2010 Year 2020 2030 2040 2050 GREENHOUSE GAS EMISSIONS Kyoto: FAIR: 6 Euro/ton CO2eq PRIMES: 12 Euro/ton CO2eq 6000 Baseline Kyoto 5000 LGEP (FAIR) Domestic action LGEP (PRIMES) Uncertainty range CO2eq (Mton) 4000 non-domestic (trade) 3000 Commitment in LGEP 2000 Result LGEP climate policy scenario EU-25 PRIMES FAIR Range share Commitment domestic domestic domestic -20% -10% -8% 50-60% -40% -16% -26% 50-70% -57% -48% 85% -64% -61% 95% all numbers compared to 1990 (%) 1000 Year 2020 2030 2040 2050 0 1990 EU-25 Baseline +4% +8% +9% +7% 2000 2010 2020 2030 2040 2050 Avoided CO2 emissions 4500 Projected energy-related CO2 emissions (Mt) 4000 Avoidable "baseline" emissions by sector: 3500 Transport Services 3000 Households 2500 Industry Energy Branch 2000 Electricity and Steam production Emissions LCEP 1500 1000 500 0 2000 2005 2010 2015 2020 2025 2030 Changes in the fuel mix of EU-25 gross inland energy consumption compared to the baseline in 2030 Renewable energy forms Nuclear Natural gas Oil LCEP nuclear phase out LCEP nuclear accelerated Solids LCEP renewables LCEP -100% -75% -50% -25% 0% 25% 50% 75% 100% Change in gross inland energy consumption compared to baseline (in 2030) 125% 150% Further CO2 reductions are possible through enhanced renewable deployment (meeting targets), while phasing out nuclear risks increasing emissions if these plants are replaced by fossil fuels 4500 4000 Transport 3500 Services 3000 MtCO2 Households 2500 Industry 2000 1500 Energy branch 1000 Electricity & Steam production 500 0 1990 2000 2030 baseline 2030 - SEP 2030 - SEP incr. Renewables 2030 nuclear phase-out 2030 - incr. nuclear 300 300 Developed regions Developing regions 250 Index (year 2000 = 100) Index (year 2000 = 100) 250 200 200 150 150 100 100 50 50 0 0 baseline LGEP baseline LGEP baseline LGEP NOx SO2 NMVOC 2000 baseline LGEP NOx baseline LGEP baseline LGEP SO2 NMVOC 2010 baseline 2020 baseline 2030 baseline 2050 baseline 2010 LGEP 2020 LGEP 2030 LGEP 2050 LGEP Change in air pollutants emissions in developed and developing regions under the baseline and LGEP scenarios relative to year 2000 100 Index (year 2000 =100) 80 60 40 20 0 NOx 2000 SO2 2020 CAFE NMVOC 2030 baseline NH3 2030 LGEP PM10 2030 LGEP-MFR Change in emissions of air pollutants in the EU 25 region relative to 2000 Identified anthropogenic contribution to modelled grid-average PM2.5 concentrations (annual mean, µg/m3) , 2000, 2020-CAFÉ, 2030-CC, 2030-CC-MFR Percentage of total ecosystems area receiving nitrogen deposition above the critical loads for the emissions of the year 2000 (top left panel), the current legislation for 2020 (top right), the LGEP in 2030 and the maximum feasible reduction case for 2030 (LGEP-B-MFR – bottom right panel). Percentage of forest area receiving acid deposition above the critical loads for the emissions of the year 2000 (top left panel), CAFE 2020 (top right), LGEP (bottom left) and LGEP-MFR (bottom right panel). 1.Regional air quality and impacts Loss in statistical life expectancy that can be attributed to the identified anthropogenic contributions to PM2.5 (in months) for the emissions of the year 2000 (top left panel), ‘CAFE 2020’ (top right), the “LGEP” (bottom left) and the LGEP-MFR (bottom right) panel). 1.Regional air quality and impacts Grid-average ozone concentrations in ppb.days expressed as SOMO35 for the emissions of the year 2000 (top left panel), CAFE 2020 (top right), LGEP (bottom left) and LGEP-MFR (bottom right panel). Provisional estimates of premature mortality attributable to ozone (cases of premature deaths per million inhabitants per year) Percentage of total ecosystems area receiving nitrogen deposition above the critical loads for eutrophication by country group and scenario Country 2000 2020, CP 2030, SEP Finland Sweden UK Norway 0.7 14.9 8.1 28.6 CLE 0.7 10.5 3.7 19.3 MFR 0.2 5.2 1.3 9.1 B-CLE 0.7 10.9 3.8 19.9 LE-CLE 0.7 10.5 3.5 19.6 B-MFR 0.2 5.1 0.8 6.9 Switzerland 79.8 56.9 18.2 53.2 52.7 9.7 Average 22.6 15.4 7.3 15.8 15.5 5.9 Percentage of freshwater ecosystems area receiving acid deposition above the critical loads for by scenario and country. Calculation results for the meteorological conditions of 1997, using grid-average deposition. Critical loads data base of 2004. Reductions in emissions compared with 2000: NOx NMVOC SO2 NH3 PM10 PM2.5 Baseline 2030 -47% -45% -67% - 6% - 38% - 46% LGEP - 52 % - 45 % - 73 % -5% - 45 % - 51 % LGEP-MFR -75% -62% -87% -43% -67% -73% 2030: • Loss of statistical life expectancy: • Premature mortality due to ozone: • Forest area at risk of acidification: • Ecosystems’ area endangered by eutrophication LGEP - 44% - 16 % - 56% - 15 % LGEP-MFR - 78% - 51% - 88% - 82% Table 8: Air pollutant emissions; baseline compared to CP and LGEP EU25 emissions air pollutant SO2 NOx VOC NH3 PM10 PM2.5 kton 2000 8736 11581 10654 3824 2455 1748 LREM-E 2030 2851 6125 5863 3597 1512 937 2030, LGEP B-CLE LE-CLE SER-CLE 2371 2150 2342 5524 4972 5550 5877 5701 5912 3582 3573 3584 1357 1258 1344 860 790 857 B-MFR 1130 2849 4101 2174 817 468 % change 2030, LGEP B-CLE LE-CLE SER-CLE -16,8 -24,6 -17,9 -9,8 -18,8 -9,4 0,2 -2,8 0,8 -0,4 -0,7 -0,4 -10,3 -16,8 -11,1 -8,2 -15,7 -8,5 B-MFR -60,4 -53,5 -30,1 -39,6 -46,0 -50,1 Table Error! No text of specified style in document.-1: Total annual emissions (Kton) of air pollutants from international shipping for the European sea region. Pollutant NOx NMVOC SO2 PM10 PM2.5 1990 2743 101 1874 171 162 2000 3501 131 2418 222 210 2010 SHIPBAU 4265 170 2652 270 255 2020 SHIPBAU 5207 219 3415 348 330 SHIPMFR 595 219 752 298 282 2030 SHIP- SHIPBAU MFR 6530 769 284 284 4406 972 450 385 426 364 Climate change benefit Emission control costs EU-25 billion Euro/year The trend engine: What is included? • About 50 crop and animal products/activities, covering agriculture according to the definition of Economic Accounts • Plus some major derived products (dairy, oils and cakes) • Areas/herd sizes, yields, market balances, producer and consumer prices, feed requirements … • Time series from 1985 onwards, projected till 2030 • EU25 (minus Cyprus und Malta) Table 4: Environmental indicators in the “best practice” scenario compared to the baseline run in EU 23 Region : European Union 2001 2011 2015 2020 2025 Item : Environmental indicator per ha (kg/ha) Nitrogen Potassium Phosphate Ammonium Methane Nitrous oxide Reference run 42.64 42.4 42.14 41.66 41.12 Best practice 42.64 37.77 35.04 31.44 28.05 Reference run 31.44 29.54 29.12 28.52 28.01 Best practice 31.44 19.92 16.27 12.26 8.81 Reference run 15.89 14.44 14.02 13.42 12.8 Best practice 15.89 9.4 7.05 4.04 1.03 Reference run 19.45 19.68 19.87 20.04 20.21 Best practice 19.45 14.28 12.3 9.8 7.32 Reference run 48.82 47.52 47.78 48 48.31 Best practice 48.82 47.52 47.78 48 48.31 Reference run 2.98 3.07 3.11 3.16 3.21 Best practice 2.98 2.88 2.83 2.77 2.72 80% organic farming, full covered storage facilities, improved manure handling in the stable. Better application techniques as injections are assumed to reduce ammonia losses during application to 5% No changes are assumed regarding the grazing practice Urban background: • 20 Cities (MERLIN project), 53 million inhabitants • EMEP regional background (1997) • OFIS model urban background • City specific fleet composition data Results for NO2 annual average 80 observations OFIS EMEP 70 60 50 40 30 20 10 0 ANTW ATHE BARC BERL BRUS BUDA COPE GDAN GRAZ HELS KATO LISB LOND MARS MILA PARI PRAG ROME STUT THES Comparison EMEP/OFIS results NO2 annual average 2000 PRAG 80 100 2 R = 0.58 70 COPE 90 MARS GDAN 80 60 LISB HELS 70 50 OFIS model (μg/m3) OFIS model results (μg/m 3) BERL 40 30 ROME 60 BRUS ANTW 50 GRAZ THES 40 BUDA 30 LOND 20 MILA 20 10 ATHE KATO 10 PARI 0 0 0 10 20 30 40 Observed (μg/m 3) 50 60 70 80 STUT 0 10 20 30 40 50 60 Observed (μg/m 3) 70 80 90 100 BARC ra z nt w e er p om 2000 Pa ri s K at ow ic e Lo nd on M il a n Br us se l A R G Th dan sk es sa lo ni ki M ar s C op eille en ha ge n St ut ga rt H el sin ki Li sb on Pr ag ue Ba rc el on a Be rl in Bu da pe st A th en s G NO2 (ug/m3) Trend NO2 European cities 2000-2030 2030-CC 2030-CC-MFR 60 50 40 30 20 10 0 Annual average ozone concentration (ug/m3) 2030-CC-MFR ila n 2030-CC M 2000 G Th ra es z sa lo ni ki St ut ga rt Ba rc el on a M ar se i ll e Lo nd on H el Co sin k i pe nh ag en A nt we rp Br us se K l at ow ic e Li sb on G da ns k Be rli n Pa ris Pr ag u Bu e da pe st A th en s Ro m e somo-35 (ppb.days) Trend somo-35 in European cities 2000-2030 Coverage:55 Million inhabitants 2030 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 PM10 annual mean values 50 observations OFIS EMEP 40 30 20 10 0 ANTW ATHE BARC BERL BRUS BUDA COPE GDAN GRAZ HELS KATO LISB LOND MARS MILA PARI PRAG ROME STUT THES Summary results 20 cities, 55 million inhabitants (2030) NO2 Scenario Population weighted average PM10 O3 (SOMO35) MIN AVE MAX EXC* MIN AVE MAX MIN AVE MAX Reference year (2000) 13 37 51 5 8.2 16 30 1300 4890 8000 LGEP 7.7 24 32 0 5.3 10 16 2000 4950 7400 LGEPMFR 4.5 15 23 0 2.5 6 10 1500 4480 6600 two hypothetical street canyon configurations: street 1:narrow canyon with a traffic volume of 20,000 vehicles per day street 2:wide canyon with a traffic volume of 60,000 vehicles per day Orientation: East to West , centrally located, specific fleet composition, average vehicle speed of 26 km/h Average yearly wind speed considered per city City Wind speed (m/s) City Wind speed (m/s) ANTW 3.10 KATO 2.62 ATHE 3.07 LISB 3.13 BARC 2.29 LOND 3.74 BERL 2.83 MARS 2.70 BRUS 3.06 MILA 1.66 BUDA 2.27 PARI 2.88 COPE 3.68 PRAG 2.63 GDAN 3.44 ROME 2.50 GRAZ 2.67 STUT 2.48 HELS 3.15 THES 1.90 Specific wind directions for each city Wind direction Frequency for THES Wind direction Frequency for STUT N NNW 12 N NNE NNW 15 NNE 10 NW NE 8 NW NE 10 6 WNW 4 ENE WNW E W ESE WSW ENE 5 2 W 0 WSW SW 0 ESE SW SE SSW SE SSW SSE SSE S S Wind direction Frequency for ROME Wind direction Frequency for LISB N NNW 10 N NNW NNE 8 NW NE NNE NE 15 4 ENE WNW 10 2 W 25 20 NW 6 WNW E ENE 5 0 WSW SW SE SSW SSE S E W ESE WSW 0 E ESE SW SE SSW SSE S 55 measured modelled 50 Concentration (μg/m 3) 45 40 35 30 25 20 15 10 5 0 ANTW ATHE BARC BERL BRUS BUDA COPE GDAN GRAZ HELS KATO LISB LOND MARS MILA PARI PRAG ROME STUT THES Mean annual NO2 street increments (μg/m3) in 20 European cities: OSPM model results compared with observations 32 measured 30 modelled 28 Concentration (μg/m 3) 26 24 22 20 18 16 14 12 10 8 6 4 2 0 ANTW ATHE BARC BERL BRUS BUDA COPE GDAN GRAZ HELS KATO LISB LOND MARS MILA PARI PRAG ROME STUT THES Mean annual PM10 street increments (μg/m3) in 20 European cities: OSPM model results compared with observations. • PM10: range modelled street increment 516 μg/m3,(average10.3μg/m3). • PM10: Average measured street increment 11.1 μg/m3, (not including exceptionally large street increment for Lisbon). • PM10, 16 station background-street pairs (< 1km distance) from airbase: 6.9 μg/m3 • HDV% and average vehicle speed per day most sensitive assumptions for street emission calculations basis reduction: discussions on Euro V and Euro VI held at EU level (European Commission, 2004) Reduction percentage of NOx emissions with respect to Euro IV (for PC and LDV) and to Euro V (for HDV) for Euro V (for PC and LDV) and Euro VI (for HDV) compliant vehicles, according to the four scenarios. Package 1 Package 2 Package 3 Package 4 Package 5 PC - LDV Gasoline -40% -40% PC - LDV Diesel -20% -20% -40% -20% -40% HDV -50% -85% -85% -85% -85% Reduction percentage of PM emissions with respect to Euro IV (for PC and LDV) and to Euro V (for HDV) for Euro V (for PC and LDV) and Euro VI (for HDV) compliant vehicles, according to the four scenarios. PC - LDV Gasoline Package 1 Package 2 Package 3 DPF (GDI) PC - LDV Diesel -50% DPF DPF HDV -0% -0% DPF COPERT III,TRENDS and input traffic activity data originating from TREMOVE (version 2.23 ). Development of NOx emission factor (%) for the two scenarios in Germany (reference year: 2000) NOx emissonfactor (%) PC Gasoline PC Diesel LDV HDV Buses 2010 CLE 36 108 81 67 70 2015 MFR 36 108 81 67 70 CLE 22 105 74 46 44 2020 MFR 20 78 58 42 42 CLE 17 102 74 34 26 2025 MFR 13 54 45 25 21 CLE 16 98 79 32 22 2030 MFR 12 38 42 15 12 CLE 17 100 83 36 21 MFR 12 30 42 11 10 Development of PM emission factor (%) for the two scenarios in Germany (reference year: 2000) 2010 2015 2020 2025 2030 PM emission factor (%) CLE MFR CLE MFR CLE MFR CLE MFR CLE MFR PC Diesel LDV HDV Buses 69 58 54 64 69 58 54 64 69 47 30 35 44 34 29 34 70 42 17 16 26 20 13 13 69 45 12 10 15 15 6 6 70 47 13 9 11 15 5 5 SCENARIOS FOR SOEOR2005: CONCLUSIONS (II) • LGEP SEP does initiate changes, but does not yet (2030) requires a fundamental “transition” in the European energy system. • A sustainability transition meeting all EU’s climate and energy targets appears to be feasible, but at significant costs (400 Euro/household/year in 2030); there is not one optimal solution > LGEP SEP variants. • Integrated CC&AP policies can result in cost savings, avoidance of trade-offs, and effective abatement of air pollutant and GHG emissions. • A sustainability transition in Europe has to be viewed in a global context. • The costs for medium term GHG emissions reductions are significant dependent on the assumed economic growth, as shown by a lower economic growth variant. While a transition such as LGEP can bring enormous benefits, it also presents substantial challenges • Benefits Decoupling of CO2 emissions from economic growth and reduced European contribution to global climate change Reduced emissions of air pollutants Reduced energy import dependency (-20%) Employment in industrial and agricultural sectors selling biofuels and clean and low energy technologies to Europe and the world • Challenges Large changes required in the energy sector Difficult choices over controversial technologies such as nuclear power and carbon capture and storage Potential for energy efficiency is well-known, but achieving energy reductions in practice will require new policy approaches Costs may be small in relation to GDP, but are nevertheless large in real terms