Download No Slide Title

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Molecular Hamiltonian wikipedia , lookup

Bohr–Einstein debates wikipedia , lookup

Bremsstrahlung wikipedia , lookup

Ferromagnetism wikipedia , lookup

Molecular orbital wikipedia , lookup

Particle in a box wikipedia , lookup

Ionization wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

X-ray fluorescence wikipedia , lookup

Tight binding wikipedia , lookup

Chemical bond wikipedia , lookup

X-ray photoelectron spectroscopy wikipedia , lookup

Auger electron spectroscopy wikipedia , lookup

Double-slit experiment wikipedia , lookup

Hydrogen atom wikipedia , lookup

Electron wikipedia , lookup

Atom wikipedia , lookup

Electron scattering wikipedia , lookup

Bohr model wikipedia , lookup

Matter wave wikipedia , lookup

Atomic orbital wikipedia , lookup

Wave–particle duality wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Atomic theory wikipedia , lookup

Electron configuration wikipedia , lookup

Transcript
The Electronic Structure of
Atoms
Chapter 4
Properties of Waves
Wavelength (l) is the distance between identical points on
successive waves.
Amplitude is the vertical distance from the midline of a
wave to the peak or trough.
7.1
Properties of Waves
Frequency (n) is the number of waves that pass through a
particular point in 1 second (Hz = 1 cycle/s).
The speed (u) of the wave = l x n
7.1
7.1
A photon has a frequency of 6.0 x 104 Hz. Convert
this frequency into wavelength (nm). Does this frequency
fall in the visible region?
l
lxn=c
n
l = c/n
l = 3.00 x 108 m/s / 6.0 x 104 Hz
l = 5.0 x 103 m
l = 5.0 x 1012 nm
Radio wave
7.1
Mystery, “Photoelectric Effect”
Solved by Einstein in 1905
Light has both:
1. wave nature
2. particle nature
hn
KE e-
Photon is a “particle” of light
7.2
Line Emission Spectrum of Hydrogen Atoms
7.3
7.3
Bohr’s Model of
the Atom (1913)
1. e- can only have specific
(quantized) energy
values
2. light is emitted as emoves from one energy
level to a lower energy
level
7.3
E = hn
E = hn
7.3
Chemistry in Action: Element from the Sun
In 1868, Pierre Janssen detected a new dark line in the solar
emission spectrum that did not match known emission lines
Mystery element was named Helium
In 1895, William Ramsey discovered helium in a mineral of
uranium (from alpha decay).
Chemistry in Action: Laser – The Splendid Light
Laser light is (1) intense, (2) monoenergetic, and (3) coherent
Chemistry in Action: Electron Microscopy
le = 0.004 nm
STM image of iron atoms
on copper surface
Schrodinger Wave Equation
In 1926 Schrodinger wrote an equation that
described both the particle and wave nature of the eWave function (Y) describes:
1. energy of e- with a given Y
2. probability of finding e- in a volume of space
Schrodinger’s equation can only be solved exactly
for the hydrogen atom. Must approximate its
solution for multi-electron systems.
7.5
Order of orbitals (filling) in multi-electron atom
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s
7.7
“Fill up” electrons in lowest energy orbitals (Aufbau principle)
??
Be
Li
B5
C
3
64electrons
electrons
22s
222s
22p
12 1
BBe
Li1s1s
1s
2s
H
He12electron
electrons
He
H 1s
1s12
7.7
The most stable arrangement of electrons
in subshells is the one with the greatest
number of parallel spins (Hund’s rule).
Ne97
C
N
O
F
6
810
electrons
electrons
electrons
22s
222p
22p
5
246
3
Ne
C
N
O
F 1s
1s222s
7.7
Electron configuration is how the electrons are
distributed among the various atomic orbitals in an
atom.
number of electrons
in the orbital or subshell
1s1
principal quantum
number n
angular momentum
quantum number l
Orbital diagram
H
1s1
7.8
What is the electron configuration of Mg?
Mg 12 electrons
1s < 2s < 2p < 3s < 3p < 4s
1s22s22p63s2
2 + 2 + 6 + 2 = 12 electrons
Abbreviated as [Ne]3s2
[Ne] 1s22s22p6
What are the possible quantum numbers for the
last (outermost) electron in Cl?
Cl 17 electrons
1s22s22p63s23p5
1s < 2s < 2p < 3s < 3p < 4s
2 + 2 + 6 + 2 + 5 = 17 electrons
Last electron added to 3p orbital
n=3
l=1
ml = -1, 0, or +1
ms = ½ or -½
7.8
Outermost subshell being filled with electrons
7.8
7.8