* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download small-signal hybrid-π equivalent circuit
Pulse-width modulation wikipedia , lookup
Ground loop (electricity) wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Stepper motor wikipedia , lookup
Signal-flow graph wikipedia , lookup
Three-phase electric power wikipedia , lookup
Power inverter wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Scattering parameters wikipedia , lookup
Electrical ballast wikipedia , lookup
History of electric power transmission wikipedia , lookup
Electrical substation wikipedia , lookup
Distribution management system wikipedia , lookup
Power electronics wikipedia , lookup
Current source wikipedia , lookup
Surge protector wikipedia , lookup
Stray voltage wikipedia , lookup
Voltage optimisation wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Voltage regulator wikipedia , lookup
Schmitt trigger wikipedia , lookup
Alternating current wikipedia , lookup
Power MOSFET wikipedia , lookup
Buck converter wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Mains electricity wikipedia , lookup
Opto-isolator wikipedia , lookup
Two-port network wikipedia , lookup
SMALL-SIGNAL HYBRID-Π EQUIVALENT CIRCUIT Content BJT – Small Signal Amplifier BJT complete Hybrid equivalent circuit BJT approximate Hybrid model Objectives Develop the small-signal models of transistor that are used in analysis of linear amplifier. Basic knowledge.. Ohm’s Law Kirchoff’s Law Thevenin and Norton’s Theorem All electronic circuit analysis require these for mathematical manipulation. Small signal hybrid- equivalent circuit of bipolar transistor Need to develop a small-signal equivalent cct -- use hybrid- model because is closely related to the physic of transistor. Treat transistor as two-port network. 2-port system AC analysis require simplification of transistors as 2-port system. Simplification leads to new parameters / definitions. 2-port system cont.. ‘Single ended’ 2-port system has 1 input port shorted to 1 output port. Alternative view =>system has a common input/output port. Three terminal device device which only three connection leads, i.e transistor falls into this category. Single-ended 2-port network Differential 2-port network The ‘differential 2-port’ network will be the basis for forthcoming analysis of all types of transistors (BJT and FET). Port variables 2-port network analysis is all about current and voltage by breaking down voltage direction (-ve to +ve or +ve to –ve) and current direction (to or from). Each current and voltage has 2 possible directions. 2-port variables Below are the equations for BJT’s derived from 2-port network simplification. Vbe hie I b hreVce I c h fe I b hoeVce Small signal hybrid-π equivalent circuit Based on 2-port network, 1 input port and 1 output port shorted together to form a common port of both input and output. Transistor has input and output ports shorted (emitter) resulting a small-signal 2-port hybrid- π network. Cont.. Figure shows iB vs. vBE with small-time varying signal superimposed at Q-pt. Since sinusoidal signals are small, the slope at Q-pt treated as a constant, has units of conductance. The inverse of this conductance is small-signal resistance, rπ Cont.. We can relate small-signal input base current to small-signal input voltage by: v be i b r Finding rπ from Q-point slope lead to: v be VT VT r ib I BQ I CQ rπ also known as diffusion resistance and is a function of Q-point parameters. Cont.. Now, we consider the output terminal characteristic of BJT. Assume o/p collector current is independent of collector-emitter voltage collector-current is a function of base-emitter voltage, so the equation: i C i C v BE .v BE Q pt From eq 5.2 in Chapter 5 Neaman, iC v BE I S exp VT Cont.. After substitution and rearrange the above, we obtain: iC v BE Q pt v BE 1 . I S exp VT VT I CQ Q pt VT The term ICQ / VT is a conductance. Since this term relates current in collector to a voltage in B-E circuit, it is called transconductance and is written: gm I CQ VT Transconductance also a function of Q-pt parameters and directly proportional to dc bias current. Cont.. Using these new parameters develop a simplified small-signal hybrid-π equivalent cct for npn BJT. Phasor components given in parentheses. This circuit can be inserted into ac equivalent circuit shown previously. Small-signal hybrid- equivalent circuit using transconductance gm=ICQ/VT r=VT/ICQ Transconductance parameter Cont.. We can relate small-signal collector current to small-signal base current for o/p of equivalent cct. i C ic i B Where i C i B .i b Q pt Q pt β is called ac common-emitter current gain. Thus: i c i b Small-signal hybrid- equivalent circuit using common-emitter current gain ib (Ib ) Current gain parameter Small-signal circuit parameters Small-signal voltage gain Combine BJT equivalent cct to ac equivalent cct. Small-signal voltage gain Voltage gain, Av = ratio of o/p voltage to i/p voltage. Small-signal B-E voltage is called control voltage, Vbe or V. The dependent current source is gmV flows through RC produce –ve C-E voltage at the output. Vo Vce g mVbe RC Cont.. From the input portion of the circuit: r Vs Vbe r RB The small-signal voltage gain is: r Vo Av g m RC Vs r RB Example 1 Given : = 100, VCC = 12V VBE = 0.7V, RC = 6k, VT=0.026V, RB = 50k and VBB = 1.2V Calculate the small-signal voltage gain. Solutions 1. 2. I BQ CEQ 4. r 6. RB 1.2 0.7 10 A 50 I CQ I BQ 100(10A) 1 mA 3. V 5. VBB VBE ( on) VCC I CQ RC 12 (1)(6) 6V VT (100)(0.026) 2.6 k I CQ 1 I CQ 1 gm 38.5 mA / V VT 0.026 r Vo 11.4 Av g m RC Vs r RB Example 2 Given VCC=5V, VBB=2V, RB=650kΩ, RC=15kΩ, β=100 and VBE(on)=0.7V. Determine a) Q-points, b) gm and r c) voltage gain. Early effect Early Voltage (VA) Early voltage Figure above show current-voltage characteristic for constant values of B-E voltage. The curves are linear with respect to C-E voltage in forward-active mode. The slope is due to base-width modulation effect Early Effect. When the curves extrapolated at zero current, they meet a point on –ve voltage axis, vce = -VA. VA --Early voltage with typical value in range of 50 < VA < 300V. Hybrid-π equivalent circuit with Early Effect Early Effect => collector current, iC is dependent to collector-emitter voltage, vCE (refer Chapter 5Neaman): v BE v CE i C I S exp . 1 VA VT The output resistance, rO: v CE rO i C Q pt Substitute and rearrange both equation, v BE 1 I S exp rO VT 1 . V A Q pt I CQ VA Cont.. Hence, small-signal transistor output resistance, rO become: VA rO I CQ rO is equivalent to Norton resistance rO is parallel with dependent current sources. Modified bipolar equivalent circuits including rO due to Early Effect. Transconductance parameter ro=VA/ICQ Current gain parameter Self study for pnp transistor From Neaman textbook, Ac equivalent circuit – pg 386 Transconductance and current gain – pg 386 & 387 Small-signal hybrid-π equivalent circuit – pg 387 Do example 6.3 Expanded hybrid-π equivalent circuit Include 2 additional resistance, rb and rμ. rb series resistance of semiconductor material. Since rb << rμ., rb is neglected (short cct) at low freq. rμ reverse-biased diffusion resistance of B-C junction. Typically in megaohms and neglected (open cct). Normally, in hybrid-π model, we neglect both rb and rμ. Other small-signal parameters -h parameter h-parameter -> relate small-signal terminal currents and voltages of 2-port network. The linear r/ship between terminal currents and voltages are: Vbe hie I b hreVce I c h fe I b hoeVce Where: i for input r for reverse f for forward o for output e for common-emitter h-parameter These equations represent KVL at input and KCL at output applied to h-parameter model for common-emitter BJT. h-parameter in relation to hybrid-π