* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Human Genes
Human genome wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
X-inactivation wikipedia , lookup
History of genetic engineering wikipedia , lookup
Dominance (genetics) wikipedia , lookup
Human genetic variation wikipedia , lookup
Human microbiota wikipedia , lookup
Human–animal hybrid wikipedia , lookup
Microevolution wikipedia , lookup
14–1 Human Heredity 14-1 Human Heredity Slide 1 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Chromosomes Human Chromosomes Cell biologists analyze chromosomes by looking at karyotypes. Cells are photographed during mitosis. Scientists then cut out the chromosomes from the photographs and group them together in pairs. A picture of chromosomes arranged in this way is known as a karyotype. Slide 2 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Chromosomes Human Karyotype Slide 3 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Chromosomes Two of the 46 human chromosomes are known as sex chromosomes, because they determine an individual's sex. • Females have two copies of an X chromosome. • Males have one X chromosome and one Y chromosome. The remaining 44 chromosomes are known as autosomal chromosomes, or autosomes. Slide 4 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Chromosomes How is sex determined? Slide 5 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Chromosomes All human egg cells carry a single X chromosome (23,X). Half of all sperm cells carry an X chromosome (23,X) and half carry a Y chromosome (23,Y). About half of the zygotes will be 46,XX (female) and half will be 46,XY (male). Slide 6 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Chromosomes Males and females are born in a roughly 50 : 50 ratio because of the way in which sex chromosomes segregate during meiosis. Slide 7 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Traits Human Traits In order to apply Mendelian genetics to humans, biologists must identify an inherited trait controlled by a single gene. They must establish that the trait is inherited and not the result of environmental influences. They have to study how the trait is passed from one generation to the next. Slide 8 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Traits Pedigree Charts A pedigree chart shows the relationships within a family. Genetic counselors analyze pedigree charts to infer the genotypes of family members. Slide 9 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Traits A circle represents a female. A horizontal line connecting a male and a female represents a marriage. A square represents a male. A vertical line and a bracket connect the parents to their children. A circle or square that is not shaded indicates that a person does not express the trait. A shaded circle or square indicates that a person expresses the trait. Slide 10 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Traits Genes and the Environment Some obvious human traits are almost impossible to associate with single genes. Traits, such as the shape of your eyes or ears, are polygenic, meaning they are controlled by many genes. Many of your personal traits are only partly governed by genetics. Slide 11 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Human Genes The human genome includes tens of thousands of genes. In 2003, the DNA sequence of the human genome was published. In a few cases, biologists were able to identify genes that directly control a single human trait such as blood type. Slide 12 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Blood Group Genes Human blood comes in a variety of genetically determined blood groups. A number of genes are responsible for human blood groups. The best known are the ABO blood groups and the Rh blood groups. Slide 13 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes The Rh blood group is determined by a single gene with two alleles—positive and negative. The positive (Rh+) allele is dominant, so individuals who are Rh+/Rh+ or Rh+/Rh are said to be Rhpositive. Individuals with two Rh- alleles are said to be Rhnegative. Slide 14 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes ABO blood group • There are three alleles for this gene, IA, IB, and i. • Alleles IA and IB are codominant. Slide 15 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Individuals with alleles IA and IB produce both A and B antigens, making them blood type AB. Slide 16 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes The i allele is recessive. Individuals with alleles IAIA or IAi produce only the A antigen, making them blood type A. Slide 17 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Individuals with IBIB or IBi alleles are type B. Slide 18 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Individuals who are homozygous for the i allele (ii) produce no antigen and are said to have blood type O. Slide 19 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Recessive Alleles The presence of a normal, functioning gene is revealed only when an abnormal or nonfunctioning allele affects the phenotype. Many disorders are caused by autosomal recessive alleles. Slide 20 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Slide 21 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Dominant Alleles The effects of a dominant allele are expressed even when the recessive allele is present. Two examples of genetic disorders caused by autosomal dominant alleles are achondroplasia and Huntington disease. Slide 22 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Slide 23 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Codominant Alleles Sickle cell disease is a serious disorder caused by a codominant allele. Sickle cell is found in about 1 out of 500 African Americans. Slide 24 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity Human Genes Slide 25 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule From Gene to Molecule How do small changes in DNA cause genetic disorders? Slide 26 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule In both cystic fibrosis and sickle cell disease, a small change in the DNA of a single gene affects the structure of a protein, causing a serious genetic disorder. Slide 27 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule Cystic Fibrosis Cystic fibrosis is caused by a recessive allele. Sufferers of cystic fibrosis produce a thick, heavy mucus that clogs their lungs and breathing passageways. Slide 28 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule The most common allele that causes cystic fibrosis is missing 3 DNA bases. As a result, the amino acid phenylalanine is missing from the CFTR protein. Slide 29 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule Normal CFTR is a chloride ion channel in cell membranes. Abnormal CFTR cannot be transported to the cell membrane. Slide 30 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule The cells in the person’s airways are unable to transport chloride ions. As a result, the airways become clogged with a thick mucus. Slide 31 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule Sickle Cell Disease Sickle cell disease is a common genetic disorder found in African Americans. It is characterized by the bent and twisted shape of the red blood cells. Slide 32 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule Hemoglobin is the protein in red blood cells that carries oxygen. In the sickle cell allele, just one DNA base is changed. As a result, the abnormal hemoglobin is less soluble than normal hemoglobin. Low oxygen levels cause some red blood cells to become sickle shaped. Slide 33 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule People who are heterozygous for the sickle cell allele are generally healthy and they are resistant to malaria. Slide 34 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule There are three phenotypes associated with the sickle cell gene. An individual with both normal and sickle cell alleles has a different phenotype—resistance to malaria— from someone with only normal alleles. Sickle cell alleles are thought to be codominant. Slide 35 of 43 Copyright Pearson Prentice Hall 14–1 Human Heredity From Gene to Molecule Malaria and the Sickle Cell Allele Regions where malaria is common Regions where the sickle cell allele is common Slide 36 of 43 Copyright Pearson Prentice Hall 14–1 Click to Launch: Continue to: - or - Slide 37 of 43 Copyright Pearson Prentice Hall 14–1 A chromosome that is not a sex chromosome is know as a(an) a. autosome. b. karyotype. c. pedigree. d. chromatid. Slide 38 of 43 Copyright Pearson Prentice Hall 14–1 Whether a human will be a male or a female is determined by which a. sex chromosome is in the egg cell. b. autosomes are in the egg cell. c. sex chromosome is in the sperm cell. d. autosomes are in the sperm cell. Slide 39 of 43 Copyright Pearson Prentice Hall 14–1 Mendelian inheritance in humans is typically studied by a. making inferences from family pedigrees. b. carrying out carefully controlled crosses. c. observing the phenotypes of individual humans. d. observing inheritance patterns in other animals. Slide 40 of 43 Copyright Pearson Prentice Hall 14–1 An individual with a blood type phenotype of O can receive blood from an individual with the phenotype a. O. b. A. c. AB. d. B. Slide 41 of 43 Copyright Pearson Prentice Hall 14–1 The ABO blood group is made up of a. two alleles. b. three alleles. c. identical alleles. d. dominant alleles. Slide 42 of 43 Copyright Pearson Prentice Hall END OF SECTION