Download Energy Systems

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Fatty acid synthesis wikipedia , lookup

Light-dependent reactions wikipedia , lookup

Evolution of metal ions in biological systems wikipedia , lookup

Ketosis wikipedia , lookup

Photosynthetic reaction centre wikipedia , lookup

Fatty acid metabolism wikipedia , lookup

Specialized pro-resolving mediators wikipedia , lookup

Oxidative phosphorylation wikipedia , lookup

Basal metabolic rate wikipedia , lookup

Butyric acid wikipedia , lookup

Adenosine triphosphate wikipedia , lookup

Metabolism wikipedia , lookup

Citric acid cycle wikipedia , lookup

Hepoxilin wikipedia , lookup

Glycolysis wikipedia , lookup

Biochemistry wikipedia , lookup

Transcript
Energy systems
Learning outcomes:
All are able to demonstrate understanding of the
energy sources required for ATP resynthesis
All are able to describe the Lactic Acid energy
system
Most are able to explain the use of PCr in ATP
resynthesis
Most are able to apply their understanding of the
lactic acid system to sporting examples.
 Some can analyse the lactic acid and determine
advantages and disadvantages
Starter activity
Research has been conducted into “activity cycles” of intermittent
sports such as soccer, hockey and rugby, which are reliant on
efficient energy systems.
a) Identify the principal energy source for each of the
following activity cycles in these types of physical
activities:
(i) walking;
(ii) sprinting;
(iii) jogging. (3 marks)
b) What are the disadvantages of using fat as an energy source
during exercise? (2 marks)
Answer
a) i)Walking – free fatty acid /triglycerides/fats;
ii) Sprinting-muscle glycogen/ATP/carbohydrates/PC;
ii) Jogging-mixture of fatty acids and muscle
glycogen/fats/carbohydrates
3 marks
b) 1 Less efficient energy yield per unit of oxygen;
2 Cannot be used anaerobically for sprint type activities/
can only be used aerobically;
3 Requires the presence of carbohydrates to be used;
4 Slow to produce energy/ insoluble in blood. 2 marks
Homework
 Research and make notes on the factors that affect the
rate of lactate accumulation:





Muscle fibre type
Exercise intensity
Rate of blood lactate removal
Training
Respiratory exchange ratio
 Complete tasks 1.13 & 1.14
 OBLA can be expressed as a percentage of VO2 max.
What do you understand by this term and how is it
different in trained and untrained performers. What
factors affect VO2 max?
Quick recap




Site of reaction –
Fuel used –
Active enzyme –
Molecules of ATP
produced -
100m sprintATP split to drive away from blocks
PCr supplies energy for rest of race
ATP SPLITTING
 muscle cell
 ATP
 ATPase




ATP-PC SYSTEM
muscle cell
Phosphocreatine
Creatine kinase
1 molecule
ATP-PC System
Tip: Rebuilding or resynthesising ATP from ADP + P
is an endothermic reaction
(energy is required)
Activity
 Using the pictures demonstrate your understanding of
the Lactic Acid system (Anaerobic glycolysis).
 One person in your group will move to another group
to share your understanding and gain further
knowledge.
 Summarise your understanding of the Lactic Acid
system.
 Extension - analyse the system and determine its
advantages and disadvantages
Lactic Acid System
 Most activities last for longer than 10 secs.
 Once phosphocreatine is depleted the lactic acid
system (anaerobic glycolysis) takes over and re
synthesises ATP from the breakdown of glucose.
 Glucose is stored in the muscles and liver as glycogen.
 In order to provide energy to make ATP glycogen has
to be converted to glucose. This process is called
glycolysis. (Sarcoplasm)
Lactic Acid System
 Glucose is broken down
into 6 phosphates (2
ATP) and pyruvic acid.
 The main enzyme
responsible for the
break down of glucose
is phosphofructokinase
(PFK) activated by low
levels of
phosphocreatine
 Pyruvic acid is
converted into lactic
acid in the absence of
oxygen.
Lactic Acid system
 Overall summary:
 C6H12O6  2(C3H6O3) + ENERGY
 ENERGY  2ADP + 2Pi  2ATP
 The energy released from the breakdown of each molecule
of glucose is used to make two molecules of ATP
 The lactic acid system actually provides sufficient energy to
re-synthesise three molecules of ATP but the process of
glycolysis itself requires energy (one molecule)
 The lactic acid system provides energy for high-intensity
activities lasting up to 3 minutes but peaking at 1 minute,
for example the 400m
Lactic Acid System
Advantages
Disadvantages
 Few chemical reactions so
 If lactic acid accumulates in the
ATP can be resynthesises
quickly
 Anaerobic so do not need to
wait for the 3 minutes or for
sufficient oxygen
 Lactic acid can be converted
back into liver glycogen
 can be called upon to produce
an extra burst of energy
(10,000m)
muscle, the pH of the body is
lowered and this has an effect on
enzyme action. PFK, the
controlling enzyme, is then
inhibited and the ability to regenerate ATP is reduced. This
affects performance, for example
‘burning out’ at the end of a race
 Only a small amount of energy
(5%) locked inside a glycogen
molecule can be released in
absence of oxygen.
Quick recap
400m race
First 10 secs ATP-PC
Lactic Acid will provide for the rest
 Site of reaction –
 Fuel used –
 Active enzyme –
 Molecules of ATP
produced -
 Sacroplasm of muscle
cell
 Glycogen (stored CHO)
 Phosphofructokinase
 2 molecules
Onset of Blood Lactate Accumulation
(OBLA)
Onset of blood lactate accumulation (OBLA) is the point at
which lactate starts to accumulate in the blood.
This occurs at around 4 mmol lactate per litre of blood
Lactate is produced when hydrogen is removed from the
lactic acid molecule.
We are constantly producing lactic acid even when working
at a low level but we are able to deal with it. (Normal 1 to 2
mmol)
 Look at diagram –
 Blood lactate and running speed to show Onset of Blood
Lactate Accumulation (OBLA)
OBLA
 OBLA is expressed as a
percentage of your VO2
max.
 OBLA can be used to
predict the endurance
capacity of a performer;
since the longer an
athlete can delay the
build up of blood lactate,
the longer he/she can
perform exercise
OBLA
 Exercise can be sustained beyond OBLA for
approximately 1 minute, since the dramatic
increase in lactic acid causes acute muscle
fatigue
Exam Question
 What are the main energy sources used by an athlete
during a 400M sprint? Explain the predominant
energy system used during this time.
(7 Marks)
Make notes on your own to answer this question.
Share with the person beside you.
Share with the whole class.
Candidate A
 The main energy sources used by a 400m runner are
carbohydrate and phosphocreatine. The ATP/PC
system is used for the first part of the race and is a
simple system to use. It uses phosphocreatine as the
fuel and there are no fatiguing by products. The energy
yeild is ATP. After 10 seconds the lactic acid system is
used.
Candidate B
 The energy sources used by the sprinter are
phosphocreatine and glucose. The main energy
system is the lactic acid system. This is anaerobic and
glucose is broken down into pyruvic acid. Two
molecules of ATP are formed and lactic acid is the by
product. This system takes place in the sarcoplasm.
Energy systems
Learning outcomes:
All are able to demonstrate understanding of the
energy sources required for ATP resynthesis
All are able to describe the Lactic Acid energy
system
Most are able to explain the use of PCr in ATP
resynthesis
Most are able to apply their understanding of the
lactic acid system to sporting examples.
 Some can analyse the lactic acid and determine
advantages and disadvantages
Plenary Activity
 All write down one question and answer that would
demonstrate the progress you have made in this
lesson.