* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Midterm Final Review
Introduced species wikipedia , lookup
Latitudinal gradients in species diversity wikipedia , lookup
Biogeography wikipedia , lookup
Overexploitation wikipedia , lookup
Storage effect wikipedia , lookup
Island restoration wikipedia , lookup
Biodiversity action plan wikipedia , lookup
Biological Dynamics of Forest Fragments Project wikipedia , lookup
Ecological fitting wikipedia , lookup
Triclocarban wikipedia , lookup
Habitat conservation wikipedia , lookup
Human impact on the nitrogen cycle wikipedia , lookup
Natural environment wikipedia , lookup
AP Bio Exam Review Ecology Unit Ecology: the scientific study of the interactions between organisms and the environment • The ecological study of species involves biotic and abiotic influences. – Biotic = living (organisms) – Abiotic = nonliving (temp, water, salinity, sunlight, soil) Heirarchy • Organisms • Population: group of individuals of same species living in a particular geographic area • Community: all the organisms of all the species that inhabit a particular area • Ecosystem: all the abiotic factors + community of species in a certain area • Biosphere: global ecosystem Learning is experience-based modification of behavior • Learning ranges from simple behavioral changes to complex problem solving – Learning: a change in behavior resulting from experience – Social learning involves changes in behavior that result from the observation and imitation of others Vervet alarm call Innate behavior is developmentally fixed • Unlearned behavior • Environmental indifference - performed the same way by all members of a species • Fixed action patterns (FAPs): innate behaviors that exhibit unchangeable sequences; carried to completion • Triggered by sign stimulus • Ensures that activities essential to survival are performed correctly without practice Directed Movements • Kinesis: simple change in activity or turning rate in response to a stimulus Kinesis increases the chance that a sow bug will encounter and stay in a moist environment. • Taxis: automatic movement, oriented movement +/- from stimulus; i.e. Phototaxis, chemotaxis, and geotaxis. Positive rheotaxis keeps trout facing into the current, the direction from which most food comes. Types of Learning 1. Habituation: loss of responsiveness to stimuli that convey little or no information – Simple form of learning 2. Imprinting: learning + innate components – Limited to sensitive period in life, generally irreversible – ie. Lorenz’ imprinting in greylag geese Types of Learning 3. Associative learning: ability to associate one stimulus with another – Also called classical conditioning – Fruit fly (drosophila): trained to respond to odor + shock Types of Learning Operant conditioning: another type of associative learning – Trial-and-error learning – Associate its own behavior with reward or punishment Types of Learning 4. Cognition: the ability of an animal’s nervous system to: – Perceive, store, process, and use information gathered by sensory receptors – Problem-solving behavior relies on cognition Territorial Behavior • Territorial behavior parcels space and resources – Animals exhibiting this behavior mark and defend their territories Patterns of Dispersal: Clumped. For many animals, such as these wolves, living in groups increases the effectiveness of hunting, spreads the work of protecting and caring for young, and helps exclude other individuals from their territory. Uniform. Birds nesting on small islands, such as these king penguins on South Georgia Island in the South Atlantic Ocean, often exhibit uniform spacing, maintained by aggressive interactions between neighbors. Random. Dandelions grow from windblown seeds that land at random and later germinate. 1. Clumped – most common; near required resource 2. Uniform – usually antagonistic interactions 3. Random – not common in nature Demography: the study of vital statistics that affect population size • Additions occur through birth, and subtractions occur through death. • A life table is an age-specific summary of the survival pattern of a population. • A graphical way of representing the data is a survivorship curve. – This is a plot of the number of individuals in a cohort still alive at each age. Survivorship Curves: • Type I curve: low death rate early in life (humans) • Type II curve: constant death rate over lifespan (squirrels) • Type III curve: high death rate early in life (oysters) • Zero population growth: B = D • Exponential population growth: ideal conditions, population grows rapidly 2,000 Population size (N) dN dt = 1.0N 1,500 dN dt = 0.5N 1,000 500 0 0 5 10 Number of generations 15 • Unlimited resources are rare • Logistic model: incorporates carrying capacity (K) – K = maximum stable population which can be sustained by environment • dN/dt = rmax((K-N)/K) • S-shaped curve • K-selection: pop. close to carrying capacity • r-selection: maximize reproductive success K-selection r-selection Live around K Exponential growth High prenatal care Little or no care Low birth numbers High birth numbers Good survival of young Poor survival of young Density-dependent Density independent ie. Humans ie. cockroaches Factors that limit population growth: • Density-Dependent factors: population matters – i.e. Predation, disease, competition, territoriality, waste accumulation • Density-Independent factors: population not a factor – i.e. Natural disasters: fire, flood, weather Interspecific interactions • Can be positive (+), negative (-) or neutral (0) • Includes competition, predation, and symbiosis • Interspecific competition for resources can occur when resources are in short supply • Species interaction is -/• Competitive exclusion principle: Two species which cannot coexist in a community if their niches are identical. – The one with the slight reproductive advantage will eliminate the other Ecological niche: the sum total of an organism’s use of abiotic/biotic resources in the environment • Fundamental niche = niche potentially occupied by the species • Realized niche = portion of fundamental niche the species actually occupies Chthamalus Balanus High tide High tide Chthamalus realized niche Chthamalus fundamental niche Balanus realized niche Ocean Low tide Ocean Low tide Predation (+/-) Defensive adaptations include: – Cryptic coloration – camouflaged by coloring – Aposematic or warning coloration – bright color of poisonous animals – Batesian mimicry – harmless species mimic color of harmful species – Mullerian mimicry – 2 bad-tasting species resemble each other; both to be avoided – Herbivory – plants avoid this by chemical toxins, spines, & thorns Community Structure Species diversity = species richness (the number of different species they contain), and the relative abundance of each species. • Dominant species: has the highest biomass or is the most abundant in the community • Keystone species: exert control on community structure by their important ecological niches – Ex: loss of sea otter increase sea urchins, destruction of kelp forests Disturbances influences species diversity and composition • A disturbance changes a community by removing organisms or changing resource availability (fire, drought, flood, storm, human activity) • Ecological succession: transitions in species composition in a certain area over ecological time Primary Succession • Plants & animals invade where soil has not yet formed – Ex. colonization of volcanic island or glacier Secondary Succession • Occurs when existing community is cleared by a disturbance that leaves soil intact – Ex. abandoned farm, forest fire Soon after fire. As this photo taken soon after the fire shows, the burn left a patchy landscape. Note the unburned trees in the distance. One year after fire. This photo of the same general area taken the following year indicates how rapidly the community began to recover. A variety of herbaceous plants, different from those in the former forest, cover the ground. Ecosystems Ecosystem = sum of all the organisms living within its boundaries (biotic community) + abiotic factors with which they interact Involves two unique processes: 1. Energy flow 2. Chemical cycling Tertiary consumers Microorganisms and other detritivores Detritus Secondary consumers Primary consumers Primary producers Heat Key Chemical cycling Energy flow Sun Trophic Structures • The trophic structure of a community is determined by the feeding relationships between organisms. • Trophic levels = links in the trophic structure • The transfer of food energy from plants herbivores carnivores decomposers is called the food chain. • Two or more food chains linked together are called food webs. • A given species may weave into the web at more than one trophic level. Primary Production • Total primary production is known as gross primary production (GPP). – This is the amount of light energy that is converted into chemical energy. • The net primary production (NPP) is equal to gross primary production minus the energy used by the primary producers for respiration (R): – NPP = GPP – R • NPP = storage of chemical energy available to consumers in an ecosystem Net primary production of different ecosystems Open ocean Continental shelf Estuary Algal beds and reefs Upwelling zones Extreme desert, rock, sand, ice Desert and semidesert scrub Tropical rain forest Savanna Cultivated land Boreal forest (taiga) Temperate grassland Woodland and shrubland Tundra Tropical seasonal forest Temperate deciduous forest Temperate evergreen forest Swamp and marsh Lake and stream 5.2 0.3 0.1 0.1 4.7 3.5 3.3 2.9 2.7 2.4 1.8 1.7 1.6 1.5 1.3 1.0 0.4 0.4 0 Key Marine Terrestrial 125 360 65.0 10 20 30 40 50 60 Percentage of Earth’s surface area Freshwater (on continents) 24.4 5.6 1,500 2,500 1.2 0.9 0.1 0.04 0.9 500 3.0 90 22 2,200 7.9 9.1 9.6 5.4 3.5 900 600 800 600 700 140 0.6 7.1 4.9 3.8 2.3 0.3 1,600 1,200 1,300 2,000 250 0 500 1,000 1,500 2,000 2,500 Average net primary production (g/m2/yr) 0 10 15 20 25 5 Percentage of Earth’s net primary production • Primary production affected by: – Light availability (↑ depth, ↓ photosynthesis) – Nutrient availability (N, P in marine env.) • Key factors controlling primary production: – Temperature & moisture • A nutrient-rich lake that supports algae growth is eutrophic. Energy transfer between trophic levels is typically only 10% efficient • Production efficiency: only fraction of E stored in food • Energy used in respiration is lost as heat • Energy flows (not cycle!) within ecosystems Feces Plant material eaten by caterpillar 200 J 67 J 100 J 33 J Growth (new biomass) Cellular respiration Tertiary consumers Secondary consumers Primary consumers Primary producers 10 J 10% transfer of energy from one level to next 100 J 1,000 J 10,000 J 1,000,000 J of sunlight Pyramids of energy or biomass or numbers gives insight to food chains • Loss of energy limits # of top-level carnivores Pyramid of Numbers • Most food webs only have 4 or 5 trophic levels Pyramid of Biomass Matter Cycles in Ecosystem • Biogeochemical cycles: nutrient cycles that contain both biotic and abiotic components • organic inorganic parts of an ecosystem • Nutrient Cycles: water, carbon, nitrogen, phosphprus Carbon Cycle CO2 in atmosphere Photosynthesis Cellular respiration Burning of fossil fuels and wood Higher-level Primary consumers consumers Carbon compounds in water Detritus Decomposition • CO2 removed by photosynthesis, added by burning fossil fuels Nitrogen Cycle • Nitrogen fixation: – N2 plants by bacteria N2 in atmosphere • Nitrification: Assimilation Denitrifying – bacteria NO3 Nitrogen-fixing bacteria in root Decomposers nodules of legumes Nitrifying Ammonification bacteria Nitrification NH3 Nitrogen-fixing soil bacteria NO2– NH4+ Nitrifying bacteria – ammonium nitrite nitrate – Absorbed by plants • Denitrification: – Release N to atmosphere Acid Precipitation • Acid precipitation: rain, snow, or fog with a pH less than 5.6 • Caused by burning of wood & fossil fuels – Sulfur oxides and nitrogen oxides released – React with water in the atmosphere to produce sulfuric and nitric acids • These acids fall back to earth as acid precipitation, and can damage ecosystems greatly. • The acids can kill plants, and can kill aquatic organisms by changing the pH of the soil and water. Concentration of PCBs Biological Magnification Herring gull eggs 124 ppm Smelt 1.04 ppm Zooplankton 0.123 ppm • Toxins become more concentrated in successive trophic levels of a food web Lake trout Toxins can’t be broken 4.83 ppm • down & magnify in concentration up the food chain • Problem: mercury in fish Phytoplankton 0.025 ppm Greenhouse Effect – Greenhouse Effect: absorption of heat the Earth experiences due to certain greenhouse gases • CO2 and water vapor causes the Earth to retain some of the infrared radiation from the sun that would ordinarily escape the atmosphere – The Earth needs this heat, but too much could be disastrous. Rising atmospheric CO2 – Since the Industrial Revolution, the concentration of CO2 in the atmosphere has increased greatly as a result of burning fossil fuels. Global Warming • Scientists continue to construct models to predict how increasing levels of CO2 in the atmosphere will affect Earth. • Several studies predict a doubling of CO2 in the atmosphere will cause a 2º C increase in the average temperature of Earth. • Rising temperatures could cause polar ice cap melting, which could flood coastal areas. – It is important that humans attempt to stabilize their use of fossil fuels. Human activities are depleting the atmospheric ozone • Life on earth is protected from the damaging affects of ultraviolet radiation (UV) by a layer of O3, or ozone. • Chlorine-containing compounds erode the ozone layer The four major threats to biodiversity: 1. Habitat destruction – Human alteration of habitat is the single greatest cause of habitat destruction. 2. Introduced species: invasive/nonnative/exotic species 3. Overexploitation: harvest wild plants/animals 4. Food chain disruption: extinction of keystone species