Download 03_LakhnoGrid16 - indico.jinr.ru – Indico

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Glass transition wikipedia , lookup

Ionization wikipedia , lookup

Electron scattering wikipedia , lookup

Radical polymerization wikipedia , lookup

Deoxyribozyme wikipedia , lookup

Heat transfer physics wikipedia , lookup

Supercontinuum wikipedia , lookup

Rubber elasticity wikipedia , lookup

Polaron wikipedia , lookup

Transcript
Russian Academy of Sciences
Institute of Mathematical Problems of Biology
Modeling of Electron Dynamics and
Thermodynamics in DNA Chains
V.D. LAKHNO
Potential application of DNA
in nanoelectronics
DNA nanowires
DNA nanobiochips
DNA nanomotors
DNA posistors
DNA tunneling diods
DNA transistors
DNA biosensors
V.D. Lakhno, DNA Nanobioelectronics, Int. J. Quant. Chem., 2008
Hole injection into DNA
( Giese et al experiments )
“Kroemer’s Lemma of Proven Ignorance”
If, in discussing a semiconductor problem,
you cannot draw an Energy Band Diagram, this
shows that you don’t know what you are
talking about, with the corollary.
If you can draw one, but don’t, then your
audience won’t know what you are talking
about.
“Quasi-electric fields and band offsets:
teaching electrons new tricks”.
Nobel Lecture, December 8, 2000, H. Kroemer.
Electron in a rigid chain
ˆ   n m

n,m
n,m
Homogeneous chain in the nearest neighbor approximation

Schroedinger equation:
For Poly G/Poly C chain:
n , n 1
 ,  n ,m  0 m  n  1 :
   bn n
n
bn t   e
ibn  bn1  bn1 
Wk  2 cos k , k  
iWk T
R n ,k , Rn,k 
2l
, l  0,1,2, N2
N
W  4
- conductivity
band width.
eikn
N 1
Regular chains
Band structure for Poly(GT)/Poly(CA)
n  2 j :  2 j , 2 j  0,  2 j , 2 j 1  1 ,
j  0,1,2,
n  2 j  1 :  2 j 1, 2 j 1  T ,  2 j , 2 j 1   2
Eigen value equations:
Wk R2 j ,k  1 R2 j 1,k   2 R2 j 1,k
Wk R2 j 1,k  T R2 j 1,k   2 R2 j  2,k  1 R2 j ,k
R2 j 1,k  u2 exp ik 2 j  1 , R2 j ,k  u1 exp ik 2 j ,
T
W 

2

k
T / 2
2

     21 2 cos 2k
2
1
2
2

2
Poly(GT)/Poly(CA)
Band structures of various regular chains
For regular chains, that contain m sites in an elementary cell, there
are m different branches determining their band structure.
V.D.Lakhno in “Modern Methods for Theoretical Physical Chemistry of Biopolymers”, Ed.
By E.B.Staricov , J.P.Lewis, S.Tanaka, (2006), Elsevier
V.D.Lakhno, V.B.Sultanov, Theor.Math.Phys., v.176, 1194, (2013)
Conclusion
1. For regular chains, that contain m sites in an
elementary cell, there are m different branches
determining their band structure.
2. For finite regular chains the discrete levels can
arise in the forbidden bands, which correspond to
localised at the chain ends states (Tamm levels).
Formation of a soliton (polaron)
state in a deformable chain
2
2
ˆ
P
k
q
Hˆ   an an 1  an an1     qn an an   n   n
2M
2
n
n
- Holstein model


 i

ˆ
 t    bn t a exp    i t Pj   j t q j  0
n
j


 t  q  t    t ,  t  Pˆ  t    t 

n
n
n
Motion equation:
ibn   nbn  bn 1  bn 1 
     k   b 2
M
n
n
n
n
n
n
  0
Exact solution for a rigid chain
bn t    bm 0 i 
nm
m

J nm 2t


J n - Bessel function of the first kind, describes
dynamics of the wavepackage spreading .
Numerical solution for
  0
Formation of a soliton state
Formation of multisoliton states
Lakhno V.D., Korshunova A.N., Mathem. Biol. And Bioinform., v.5, (2010), p.1-29.
Results of modelling
1)
A delocalized state in the chain is unstable.
2)
A polaron (soliton) state is formed both in the presence and in
the absence of dissipation.
3)
The time for which a localized state is formed depends greatly
on the wave function phase.
4)
In multisoliton states objects with fractional electron charge
are formed which can be found experimentally.
Electron motion in an electric field in a rigid
  0
chain
Exact solution of Schroedinger equation for a rigid chain:
bn t  
 t  
 bm 0 i 
nm
e
 i  n  m t
m  
J n  m  t 
4
 t
sin  B , B  ea
B
 2 
J n  x  - Bessel function of the first kind
N
X t    bn t  na
n
X t   X 0  
2
- displacement of the electron’s mc
2a
S 0 cos 0  cosB t  0 
B

S 0   b 0 bm 1 0   S 0 e

*
m
Oscillation amplitude X t   0
i 0
, if

,
X 0   a  m bm 0
bm (0)  1

2
Generation of Bloch oscillations in a
  0
deformable chain
  0
Solid line indicates the dependence of the Bloch oscillations period on
the electric field intensity Е ( TB  2 / B
B  eEa /  - Bloch frequency), for   0 . Black dots indicate
calculation values for   4 ,

 

4
  n ~ 1.3 10 eV /  


Time dependence of the hole’s center of mass for
various values of the electric field intensity
~
, (б)E  0.04
~
, (с)
E  0.06
.
~
E  0.08
(а)
V.D.Lakhno, N.S.Fialko, Pis’ma v ZhETF,
v.79, (2004), p.575-578.
Bloch oscillations in a homogeneous
nucleotide chain
Conclusion
1)
It is shown that at zero temperature, a hole placed in homogeneous
synthetic nucleotide chain with applied electric field demonstrates
Bloch oscillations.
2)
The oscillations of the hole placed initially on one of base pairs
arise in response to disruption of the initial charge distribution
caused by nucleotide vibrations
3)
The finite temperature fluctuations result in degradation of coherent
oscillations. The maximum permissible temperature for DNA “Bloch
oscillator” occurrence is estimated.
Soliton in a continuum approximation
b  2 b
i 
 qb  0
2
t 2m X
 2q
 2
2
 0 q 
b 0
2
t
M
Davydov: how a soliton can move in the absence of dispersion (JETP, 1980)
q   
  
b  

2






d




b

,
2 
M 0
 

sin

V2
,  2 2,
a 0

1
ch 1 ( / r ),
2r
r  4M ( 0 ) 2 / m 2 a 2 ,   ( X  vt) / a, q()  c sin(  /  )
V.D.Lakhno, Int. Quant. Chem.,V.110, (2010), pp.129-137
Emission of phonons by a moving soliton in a
dispersionless chain.
Probability of
charge’s
occurrence
on site |bn|2
Displacements
of sites un
  0.1, 2  0.1,   0.1,
(   / ,   0 ,   x 2 3 / M)
Dispersion
qn1  qn1 
-
for a discrete model
-
for a continuum model
2
cos k
M
-
discrete
 2   02  V02 k 2
-
continuum
2

q
 a2
 X2
 2   02 
Davydov:
for
V  V0 - steady state of a soliton exists
for
V  V0 - steady state is impossible because of the emission
Moving soliton
without
dispersion
with
dispersion
  0.1, 2  0.1,   0.1,   0.001
Conclusion
1)
In a molecular chain with dispersionless phonons at zero
temperature the stationary motion is impossible.
2)
In a molecular chain with disperionless phonons at zero
temperature, a “quasistationary” moving soliton state of an excess
electron is possible
3)
As the soliton velocity vanishes, the path length of the excess
electron exponentially tends to infinity.
4)
In the presence of dispersion, when the soliton initial velocity
exceeds the maximum group velocity of the chain, the soliton slows
down until it reaches the maximum group velocity and then moves
stationary at this maximum group velocity.
Homogeneous motion of a polaron over a
chain in a electric field
i  bn  bn 1  bn 1   n bn  e  a n bn
  k    b
M
n
n
n
2
E  0.01,   1,   1.276,   2
Peierls-Nabarro oscillations
3
TPN  1 , V  dX ~ ,
V
dt
~
~ 2
X t    n bn t 
n
Comparison of the theory with numerical
experiments
4 2

 1
1
E  22
 V 4 sinh 2 2/ V 
Lakhno V.D., Korshunova A.N., Eur.
Phys. J. B, v.79, (2011), p.147-151.
Conclusions
1)
In a weak electric field a Holstein polaron moves uniformly
experiencing small Peierls – Nabarro oscillation of its shape.
2)
At critical value of the electric field intensity polaron starts
oscillating at Bloch frequency, retaining its shape.
3)
For sufficiently long time soliton becomes a breather that oscillates.
4)
In all cases the polaron motion along the chain is infinite.
General approach to calculation of
the mobility at high temperatures
dbn
i
 qn bn  bb1  bn 1 
dt
Motion equations for
Holstein Hamiltonian:
2
M
d qn
dt
2
An t   0

dqn
2

  f
 k qn   bn  A n t 
dt
A n t A m t  t   2T  f  n m t 
e
2
2

lim   x t  exp   t  d t
2T 0 0
x t   a
2
2
 n bn t 
2
n
V.D.Lakhno, N.S.Fialko, JETP Letters, 78, 336, (2003).
2
Temperature dependence of Hole
mobility in (PolyG / PolyC)

  0,084 eV,   0,13 eV /  ,
11
12
-1

  K / M  10 sec ,    f / M  6  10 sec-1
1 - band mobility ~ (T0 / T)(2,3)
2 - LRP mobility
  7,7 K , TP  20 K ,
max  1500
cm 2/ V sec,
0  2,87cm 2/ V sec hole mobility at T0 = 300 K
Delocalisation parameter
R 
1
 bn
R  1,
R  N,
bn
4
2
bn
  n ,n0 ;
2
Thermodynamic values of R(T) for chains of different lengths N
(logarithmic scale).
V.Lakhno,N.Fialko, JETP, v.120,125,(2015)
1
N
Polaron energy
Results of calculations of thermodynamically equilibrium values.
Electronic part of the total energy Ee(T) for chains of length 19, 40 and 60 sites. Dashed lines
show polaron energies Epol and the lower bound of the conductivity band 2
Heat capacity
CV 
Ce 
 Etot T 
T

2
1  2





E
T

E
T

tot
tot

KT 2 
Ee
 CV  NK B
T
Normalized electronic heat capacity.
CV 
 Etot T 
T

2
1  2
,




E
T

E
T

tot
tot
2

k BT 
Ce 
Ee
 CV  Nk B
T
Conclusion
1.
For T=0, Ee=Epol, temperature grows,Ee(T) increases
and charge passes on from polaron state to
delocalized one.
2.
The polaron decay temperature depends not only
on the model parameters but also on the chain
length: the larger is N, the less is the decay
temperature.
3.
The peak on the graph of electronic heat capacity is
observed at the polaron decay temperature.
DNA-based molecular devices
  nB , n  1, 2, 3,  B  eEa
•
•
•
•
•
Terahertz emitters of electromagnetic waves
Nanoelements with negative differential conductivity
Nanoelements with absolute negative conductivity
Multiphoton radiation detectors
Cascade lasers
DNA FIELD TRANSISTOR
source
drain
gate
K.-H.Yoo, D.H.Ha, et al,
Phys.Rev.Lett., 2001,
87, 198102
E. Ben-Jacob et al,
patent, 2007
Nanobiochip
The measuring of current along the separated contour
diagnoses its change after hybridization
V. D. Lakhno, V. B. Sultanov.
J. Chem. Theory Comput. 2007, 3, 703-705
Logical gate XOR
V. D. Lakhno, V. B. Sultanov.
Mathematical biology and bioinformatics,
2006, v.1 (1), pp. 123-126.
v1
v2
p
1
1
0*
1
0
1
0
1
1
0
0
0
The results were obtained in
collaboration with my colleagues:
N.Fialko
V.Sultanov
A.Korshunova
A.Shigaev
E.Sobolev
Thank you for your attention