* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download pdf
Ring-closing metathesis wikipedia , lookup
Kinetic resolution wikipedia , lookup
Hydroformylation wikipedia , lookup
Aldol reaction wikipedia , lookup
Asymmetric hydrogenation wikipedia , lookup
Elias James Corey wikipedia , lookup
Metal carbonyl wikipedia , lookup
Baylis–Hillman reaction wikipedia , lookup
Discodermolide wikipedia , lookup
Petasis reaction wikipedia , lookup
Asymmetric induction wikipedia , lookup
Introduc)on to Asymmetry Aaron Kempema Nick Struntz September 6, 2012 Importance of enan)omerically pure drugs • Different enan)omers can have different effects on the body • Ac)ons of “Inac)ve Isomers” 1. One isomer possesses therapeu)c ac)on while the other contributes to side effects – Ethambutol – one isomer treats TB, other causes blindness – Naproxen – one isomer treats arthri)s, other causes liver poisoning – Thalidomide – next slide 2. Isomers have opposite effects – Picenadol – one isomer is a agonist, other is an antagonist 3. Stereoselec)ve metabolic inversion of one of the stereocenters – Ibuprofen 4. Stereoselec)vity may be restricted to only one component in the biological ac)on Ariens, E. J. Eur. J. Clin Pharmacol 1984, 663. Thalidomide • Origin – Developed in the 1950’s by Grunenthal in Stolberg, German – Used by the Nazi’s during WWII – Treated morning sickness, aid sleep and epidemic typhus • Birth Defects (Racemiza)on) – 10,000 kids were born with birth defects in 1950’s-‐60’s – William McBride and Widukind Lenz found the link – Never approved by the FDA • A`ermath – US Congress passed laws requiring drugs be tested for safety during pregnancy – Lawsuits against Grunenthal (Dark Remedy) – Leprosy, but strictly controlled – Cancer? • Drugs need to be developed as single enan)omers Chiral Resolu)on • Louis Pasteur seperated tartaric acid isomers in 1849 – Naturally occurring in plants – L-‐(+) is the natural enan)omer • Types of crystalliza)on – – – – Conglomerate – greater affinity for same enan)omer Racemic – greater affini)ty for other enan)omer Psedoracemate – no strong affinity Quasiracemate – slight preference for one ena)omer • What do you do if your compound does not crystallize in a conglomerate fashion? Classical Chiral Resolu)on • Enan)omerically pure compound crystallizes with one of the isomers of the racemic compound • Several crystalliza)ons are required • Needs a site for protona)on Ault, A. Organic Syntheses, 1969, 49, 93. Resolving Agents Classical Chiral Resolu)on Advantages Disadvantages Scalable Limited scope Cheap (tartaric acid) Mul)ple crystalliza)ons Precedent 1950’s-‐70’s Maximum 50% yield Modern chiral resolu)on • Resolu)on-‐Racemiza)on-‐Recycle – Synthesis of Duloxe)ne (Eli Lilly) – Mandelic acid used as resolving agent Deeter, J.; et al Tetrahedron Le=. 1990, 31, 7101. Fujima, Y.; et al Org. Process Res. Dev. 2006, 10, 905. Enzyma)c Resolu)on • Kine)c Resolu)on – Two enan)omers have different reac)on rates – Enzyma)c resolu)on Kazlauskas, R. J. Organic Syntheses 1992, 70, 60. Another Enzyma)c Resolu)on • Use towards total synthesis – Amano PS lipase resolves secondary alcohols Batwal, R. U. et al. Tetrahedron: Asymmetry 2011, 22, 173. Chiral Pool Synthesis • Derived from plants • Carbohydrates • Amino Acids Madabhushi et al. Tetrahedron Le=. In Press Rasmussen, T. S.; Jensen, H. H. Carbohydr. Res. 2011, 2855. Dana, A.; et al. Tetrahedron, 2001, 57, 1169. Advantages/Disadvantages Enzyma)c Resolu)on Advantages Disadvantages Decent scope S)ll limited in scope No auxiliary cleavage Requires op)miza)on Enzymes can be cheap Low ee’s Chiral Pool Synthesis Advantages Disadvantages Enan)omerically pure Extra steps Cheap source of chirality One ena)omer is available Precedent Chiral Auxiliaries • Chiral Auxilary – A chiral compound is temporarily incorporated into a molecule – First reported by Corey: – Evans oxazolidinone auxiliaries are the most well-‐known chiral auxiliaries • Derive from amino acids Corey, E. J. et al J. Am. Chem. Soc. 1975, 97, 6908. Evans Aldol Reac)on • Evans aldol reac)on – Forms the (Z)-‐boron enolates – High stereoselc)vity is anributed to the rela)vely short boron –oxygen bond length – Forms a )ght, six-‐membered chair-‐like transi)on state, Carbonyl is opposed to the enolate oxygen dipole – Syn product Evans, D. A.; et al. J. Am. Chem. Soc. 1981, 103, 2127. Zimmerman-‐Traxler Transi)on State Evans aldol Con)nued • Auxiliary Removal • An)-‐Aldol – Open transi)on state under Lewis acid condi)ons – An) is more thermodynamically stable Weinreb, S. W. et al. Tetrahedron Le=. 1977, 18, 4171. Dias, L. C. et al. Org. Le=. 2003, 5, 265. Evans, D. A. et al. J. Am. Chem. Soc. 2002, 124, 392. Other Chiral Auxiliaries • Crimmins – Oxazolidinethiones – Titanium has a higher affinity for S than O Base Equiv Yield Evans:Non-‐Evans DIPEA 2.5 86 86:14 DIPEA 1.1 75 5:95 – Easy to remove • Alcohol (NaBH4) • Weinreb amide (NHCH3OMe) • Methyl ester (MeOH) Crimmins, M. T.; et al. J. Org. Chem. 2001, 66, 894. Other Chiral Auxiliaries • Myers – Both (R,R) and (S,S) pseudoephedrine Chiral Auxiliaries Advantages Disadvantages Very Selec)ve Adds two steps to synthesis Mul)ple Auxiliaries Expensive/make Precedent Myers, A. G.; et al. J. Am. Chem. Soc. 1997, 119, 6496. Asymmetric Synthesis • Creates one or more desired chiral centers • Enan)omerically pure chiral catalysts lead to the produc)on of enan)omerically enriched products • 2 func)ons: • Ac)va)ng func)on • Controlling func)on HO2C • • • • HO2C CO2H Metal ligand complexes with chiral ligands N Chiral organocatalysts H Biocatalysis O H Chiral Lewis acids H H O N O O Marckwald, W. Berichte der deutschen chemischen GesellschaO 1904, 37, 349 H Optically pure Metal Complex Enantioselective Reactions • First heterogeneous by Erlenmeyer • ZnO/d-‐Fructose • Addi)on of Br2 across double bond O O PtO2 OH OH N OH H Optically active (+)-!-phenylbutyric acid N 8-9% ee E. Erlenmeyer and H. Erlenmeyer, Biochem. Zeitschr. 1922, 233, 52 D. Lipkin and T.D. Stewart, J. Am. Chem. Soc. 1939, 61, 3295 Metal Complex Enantioselective Reduction [RhL,COD]BF4 H2 HO2C HO2C P (+)-hydratropic acid 15% ee MeO CO2H [RhL,COD]BF4 H2 H MeO NHCOMe O H CO2H NHCOMe OMe MeO P P DiPAMP Knowles, S. Chem. Comm. 1968, 1445 Kungl. Vetenskapsakademien. The Royal Swedish Academy of Sciences. Advanced informa)on of the Nobel Prize in Chemistry 2001 O L-DOPA Metal Complex Enantioselective Reduction MeO CO2H [RhL,COD]BF4 H2 H MeO NHCOMe O H CO2H NHCOMe OMe MeO P P Knowles, S. Chem. Comm. 1968, 1445 Kungl. Vetenskapsakademien. The Royal Swedish Academy of Sciences. Advanced informa)on of the Nobel Prize in Chemistry 2001 O L-DOPA Metal Complex Enantioselective Reduction Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932 Kungl. Vetenskapsakademien. The Royal Swedish Academy of Sciences. Advanced informa)on of the Nobel Prize in Chemistry 2001 Metal Complex Enantioselective Reduction Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932 Kungl. Vetenskapsakademien. The Royal Swedish Academy of Sciences. Advanced informa)on of the Nobel Prize in Chemistry 2001 Metal Complex Enantioselective Oxidation Allylic Alcohol OH Epoxide O H % ee (Eu) 77 95 79 94 70 >95 87 >95 OH O H OH % Yield OH OAc H O OH OH Ph Ph Ph OH H O Ph Sharpless, K.B. J. Am. Chem. Soc. 1980, 102, 5979 OH Metal Complex Enantioselective Oxidation Kungl. Vetenskapsakademien. The Royal Swedish Academy of Sciences. Advanced informa)on of the Nobel Prize in Chemistry 2001 Metal Complex Enantioselective Oxidation N OH" OH" R'O H Ar R3 OH R3 0.2 - 0.4% OsO4, NMO R2 R' = p-chlorobenzoyl R1 Ar OH" OH" R'O Sharpless, K.B. J. Am. Chem. Soc. 1980, 110, 1968 H N R2 R1 OH 80 - 95% yield 20 - 80% ee Metal Complex Enantioselective C-C Bond Formation! • Formulation O Polymer Supported Pt Catalyst O N Ph2P PPh2 Cl Pt SnCl3 S)lle. J. Am. Chem. Soc. 1987, 109, 7125 Metal Complex Enantioselective C-C Bond Formation! • Grignard Cross-Coupling SiMe3 SiMe3 Ph Br MgBr Ph 63% 85% ee H NMe2 Fe Kumada. J. Org. Chem. 1986, 51, 3772 P Ph2 Pd H SiMe3 Ph Metal Complex Enantioselective C-C Bond Formation! • Allylic Alkylation CO2Me CO2Me OAc AcO Na CO2Me CO2Me CO2Me 95% 72% ee H Fe Yoshihiko. Tet. Le=. 1986, 27, 191 R2 NMe P Pd P Ph2 N R Nu R OH OH Metal Complex Enantioselective C-C Bond Formation! • Cyclopropanation Cu Ph N2CHCO2Et Ph CN N HO N H H H 25-75% 68-97% ee Fritschi. Angew. Chem. 1986, 98, 1028 OH CO2Et Metal Complex Enantioselective C-C Bond Formation! • Diels Alder OtBu OtBu Ph H TMSO O Danishefsky. Tet. Le=. 1983, 24, 3451 H 39% ee TMSO H H Ph Metal Complex Enantioselective C-C Bond Formation! • Hydrocyanation HCN PdL2 6% 40% ee Hodgson. J. Organomet. Chem. 1987, 325, C27 CN Metal Complex Enantioselective C-C Bond Formation! • Cyclization O Zn O CHO Sakane. Tetrahedron 1986, 42, 2203 91% 90% ee OH Chiral Organocatalysts Advantages: • No metal based chemistry (“green”) • Lack of sensi)vity to oxygen and moister • Readily available with rela)vely low cost • Low toxicity O OH O O NH O O 99% 93% ee O O O H O H N H O O OH Chiral Lewis Acids Exploits difference in the energe)cs of the enan)omeric transi)on states O H Me3SiCN H OH 82% ee O TiCl2 O Reetz. Chem. Ind. 1986, 824 Bao. J. Am. Chem. Soc. 1993, 115, 3814 CN Microorganism Biocatalysis O Cl Culture of Candida kefyr O O OH O Cl 79% ~ 100% ee Jung. Adv. Biochem. Engin. Biotech. 1993, 50, 21 Schmid. Nature 2001, 409, 258 O