* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Recurrent divergent selection in alfalfa
Medical genetics wikipedia , lookup
Genetic drift wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Genetic testing wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Genome (book) wikipedia , lookup
Quantitative trait locus wikipedia , lookup
Behavioural genetics wikipedia , lookup
Genetically modified organism containment and escape wikipedia , lookup
Public health genomics wikipedia , lookup
Genetically modified food wikipedia , lookup
Epigenetics in stem-cell differentiation wikipedia , lookup
Human genetic variation wikipedia , lookup
Group selection wikipedia , lookup
Polymorphism (biology) wikipedia , lookup
Genetic engineering wikipedia , lookup
Population genetics wikipedia , lookup
Microevolution wikipedia , lookup
Improved saccharification efficiency of alfalfa for bioethanol production Annick Bertrand, Yves Castonguay, Annie Claessens, Jean Cloutier Agriculture and Agri-Food Canada, Québec City Perennial forage crops Perennial vs annual crops: Require fewer inputs, Increase carbon sequestration Low management Reduce erosion Grow on marginal lands Alfalfa Low reliance on N fertilizer (legume) High yield (6 t/ha) Drought resistant (deep root system) Amenable to genetic improvement Harvest fractionation of alfalfa Aerial part Stems Ethanol production High cellulose content (ethanol) Leaves Feed protein co-product High protein content (30%) Co-products (pinitol, flavonoids) Bioethanol production from perennial alfalfa To increase the competitivity of alfalfa as feedstock for ethanol production, there is a need for the development of new genetic resources with: High sugar content High stem saccharification • Screening test using commercial enzymes Value-added co-products High throughput screening Enzymatic cocktail for stem degradation Accellerase 1500 (Genencor) Cellulase and xylanase activity (XC and XY additives) Pectinex 3XL (Sigma) added for alfalfa Pectinase, cellulase et hemicellulase Near-infrared reflectance spectroscopy Prediction of physicochemical parameters Minimal sample preparation High throughput screening Stem degradability = Enzyme-released glucose Enzyme-released glucose (NIRS) 180 160 Fréquence Frequency 140 120 100 80 60 40 D- D+ 20 0 80 90 100 110 120 130 140 150 Glucose enzymatique prédit (gglucose kg-1 parois) Enzyme-released 160 170 Duceppe, Bertrand et al. (2010) Efficient high throughput screening Rapidly characterizes CW degradability of 1200 genotypes Large genetic diversity for stem degradability Selection of 20 genotypes with high (D+) and 20 with low (D-) degradability Crosses of selected genotypes Intercrossing 20 D+ and 20 D- genotypes • Three cycles of recurrent divergent selection in two genetic backgrounds • Conventional breeding (no GMO) Stem degradability is genetically inherited Enzyme-released glucose (mg g-1 DW) positive (D+) negative (D-) Heritability =0.26 Heritability =0.39 Number of cycles of recurrent selection • 25% increase in stem degradability • No chemical pre-treatment • No GMO Field validation at three sites with contrasting pedoclimatic conditions in Québec b a b Enzyme-released glucose (mg g-1 DW) Probing the genome of contrasted genetic material + - Number of cycles of recurrent selection Marker-Assisted Selection (MAS) for higher CW degradability • Use of the unique genetic material generated by recurrent divergent selection • Identification of genomic regions affecting stem degradability • Development of molecular markers to accelerate the identification of highly degradable plants Random genome amplification Sequence-related amplified polymorphisms (SRAP) PCR approach targeting coding sequences Base on two primer pairs (17-18 nucleotides) One rich in GC content (exons) One rich in AATT content (introns) Uncover numerous polymorphic regions over the entire genome Polymorphism analyses Populations Pools Biomass type : Orca Winter-hardy type: 54V54 Genotypes with high (D+) or low (D-) stem degradability Pool of DNA of 50 for each population PCR approach 42 SRAP primer pairs Initial screening DNA pool (50 genotypes) of initial cultivars(0), and Cycle 2 positive (2+) and negative (2-) Two genetic backgrounds: 54V54 and Orca 54V54 Me4-R14 M -2 0 +2 M -2 0 Orca F16-R7 F9-R7 +2 M -2 0 +2 • Polymorphic bands either increase or decrease in intensity • Response could vary according to genetic background F16-em4 M -2 0 +2 Polymorphism Me2-R10 positively associated with increased stem degradability in both backgrounds Me2-R10 M 54V54 -2 0 +2 Orca M -2 0 +2 SRAP primers combination: Me2-R10 54V54 Cycle 2M -2 0 N= 2 +2 54V54 Cycle 2+ M -2 0 +2 N= 10 Band intensity reflects the number of genotypes with polymorphisms in each population Selection based on polymorphic markers • DNA extraction in 250 genotypes of each population. • Score of genotypes with six different polymorphic markers in 54V54 and Orca (presence or abscence) • Selection of 25 genotypes with more than two polymorphisms • Intercrossing selected genotypes • Proceeded to a second cycle in order to increase the frequency of the selected markers in new populations Next steps • Stem degradability assessment of progenies after 2 cycles of MAS: to confirm the link between Markers and degradability Impact of MAS on stem degradability • Next generation sequencing (GBS): for genome-wide identification of regions affecting stem degradability Scientists Annick Bertrand Annie Claessens Yves Castonguay Patrice Audy Research team Plant biochemistry Plant breeding Molecular physiology Molecular biology Post-doctorate Solen Rocher Molecular genetics Research assistants Josée Bourassa Sandra Delaney Jean Cloutier Josée Michaud Marie-Claude Pépin AAFC © 2012 Plant biochemistry Plant biochemistry Molecular genetics Molecular physiology Plant breeding Influence de la lignine • • Large variabilité génétique Relation négative entre la quantité de lignine et la quantité de glucose libéré (Jung et al 1997) Sélection pour une plus grande dégradabilité de la fibre basée sur les marqueurs moléculaires NOI 2652 Validation de différences dans la fréquence génotypique • Score 45 génotypes des populations 2+ et 2dans chaque background • 10 marqueurs validés Screening des deux popualtions • Extraction de l’ADN de 500 génotypes de chaque population • Score de 250 génotypes avec 5 marqueurs dans 54V54 et 6 marqueurs dans Orca • 25 génotypes sélectionnés pour les croisements Prochaines étapes • Croisements polycross de 25 plants de Orca et de 54V54 (en cours) • Purification et clonage des séquences SRAP polymorphiques (hiver 2014) • Second cycle de sélection MAS dans les deux backgrounds (Été-automne 2014). • Croisements polycross du cycle 2 à l’hiver 2015. Stem degradability is genetically inherited Heritability =0.39 for 54V54 Heritability =0.26 for Orca Parents (20 for each group) Progenies (110 for each group) Context Over 2 millions ha of agricultural land in forage production in Québec Knowledge, machinery, the infrastructure to cultivate harvest and store perennial forage crops Bioenergy represent new opportunities for farmers, processors, and rural communities. Recherche de polymorphismes de l’ADN génomique associés à la dégradabilité SRAP (Sequence-related amplified polymorphisms) 35°C 50°C Enzyme-released glucose (mg g-1 DW) Stem degradability is genetically inherited Heritability =0.26 Heritability =0.39 Number of cycles of recurrent selection Recurrent divergent selection in alfalfa • • • • Assessment of 1200 genotypes (no pre-treatment, highly lignified stem base) Large genetic diversity for stem degradability in alfalfa Selection of 20 genotypes with high (D+) and low (D-) degradability Crosses of selected genotypes Enzyme-released glucose (mg g-1 DW) Stem degradability is genetically inherited Heritability =0.26 Heritability =0.39 Number of cycles of recurrent selection • 25% increase in stem degradability • No chemical pre-treatment • No GMO