* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Equivalents of the (Weak) Fan Theorem
Mathematics and art wikipedia , lookup
History of mathematical notation wikipedia , lookup
History of the function concept wikipedia , lookup
Mathematical proof wikipedia , lookup
Mathematics and architecture wikipedia , lookup
Vincent's theorem wikipedia , lookup
Philosophy of mathematics wikipedia , lookup
Mathematics wikipedia , lookup
Brouwer–Hilbert controversy wikipedia , lookup
Elementary mathematics wikipedia , lookup
History of trigonometry wikipedia , lookup
Non-standard calculus wikipedia , lookup
Quantum logic wikipedia , lookup
Ethnomathematics wikipedia , lookup
Karhunen–Loève theorem wikipedia , lookup
History of mathematics wikipedia , lookup
Georg Cantor's first set theory article wikipedia , lookup
List of first-order theories wikipedia , lookup
Gödel's incompleteness theorems wikipedia , lookup
Laws of Form wikipedia , lookup
Fermat's Last Theorem wikipedia , lookup
Wiles's proof of Fermat's Last Theorem wikipedia , lookup
Four color theorem wikipedia , lookup
Nyquist–Shannon sampling theorem wikipedia , lookup
List of important publications in mathematics wikipedia , lookup
Mathematical logic wikipedia , lookup
Central limit theorem wikipedia , lookup
Foundations of mathematics wikipedia , lookup
Proofs of Fermat's little theorem wikipedia , lookup
Equivalents of the (Weak) Fan Theorem Constructive Reverse Mathematics Supervisor: Wim Veldman Iris Loeb Radboud Universiteit Nijmegen Reverse Mathematics * Different kinds of reverse mathematics: – classical reverse mathematics – informal constructive reverse mathematics – formal constructive reverse mathematics * Similarity: proving that a mathematical theorem is equivalent to some axiom Classical Reverse Mathematics H.Friedman, Simpson * Classify mathematical theorems: Which set existence axioms are needed to prove the theorems of ordinary mathematics? * Prove conservativity of the extensions Informal Constructive Reverse Mathematics Ishihara, Mandelkern, Schuster * Classify intuitionistic, recursive constructive and classical theorems: Which logical principles are needed to prove these theorems? Formal Constructive Reverse Mathematics (I) Kohlenbach, Toftdal * Classify recursive constructive and classical theorems in a formal, refined way: Which logical principles are needed to prove these theorems? Formal Constructive Reverse Mathematics (II) van den Brink, Ishihara, Loeb, Veldman * Classify intuitionistic, recursive constructive and classical theorems: Which logical principles and function existence axioms are needed to prove these theorems? Language of intuitionistic second order arithmetic: * first order variables: i, k, m, n, . . . * second order variables: α, β, γ, . . . * logical constants: ∧, ¬, ∨, →, ∀, ∃ * mathematical constants: =, +, ·, j, j1, j2, 0, S * Church’s lambda: λ Axioms of WKV: * Equivalence axioms * Basic axioms * Pairing axioms * Function axiom * Conversion axiom scheme * Axiom scheme of induction * Axiom scheme of primitive recursion * Axiom scheme of unique choice Fan β(hi) = 0 ∀m[β(m) = 0 ↔ ∃n[β(m ∗ hni) = 0]] ∀m[β(m) = 0 → ∃k∀n[β(m ∗ hni) = 0 → n < k]] Bar ∀α ∈ β∃n[γ(αn) = 1] Bar ∀α ∈ β∃n[γ(αn) = 1] Bar ∀α ∈ β∃n[γ(αn) = 1] Bar ∀α ∈ β∃n[γ(αn) = 1] Bar ∀α ∈ β∃n[γ(αn) = 1] Bar ∀α ∈ β∃n[γ(αn) = 1] Fan theorem ∀α ∈ β∃n[γ(αn) = 1] → ∃m∀α ∈ β∃n[n ≤ m ∧ γ(αn) = 1] The interval [0, 1] // // // // // // // // / // ... ... // / // // // // // // 1 1 3 1 1 3 5 1 3 5 7 3 1 7 9 1 5 9 11 5 3 11 13 3 7 13 15 7 [0, 8 ] [ 16 , 16 ] [ 8 , 4 ] [ 16 , 16 ] [ 4 , 8 ] [ 16 , 16 ] [ 8 , 2 ] [ 16 , 16 ] [ 2 , 8 ] [ 16 , 16 ] [ 8 , 4 ] [ 16 , 16 ] [ 4 , 8 ] [ 16 , 16 ] [ 8 , 1] / / / / / / // // /// /// /// /// /// /// // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // [0, 41 ] [ 18 , 38 ] [ 41 , 12 ] [ 83 , 58 ] [ 12 , 43 ] [ 58 , 78 ] [ 43 , 1] ?? ?? ?? ?? ?? ?? ? ? ?? ?? ?? ?? ?? ?? ?? ? ? ?? ?? ?? ?? ?? ?? ? ? ?? ?? ?? ?? ? ? [0, 21 ] O [ 41 , 34 ] [ 12 , 1] OOO oo OOO ooo o OOO o OOO ooo OOO ooo o o OOO oo OOO ooo o OOO o oo OOO ooo OO o o o [0, 1] Definition Heine-Borel * Every open cover of the interval [0, 1] has a finite sub-cover. * Let (α)i be a sequence of real numbers (the lower bounds). Let (β)i be a sequence of real numbers (the upper bounds). If for all x ∈ [0, 1] there exists an i such that αi < x < β i, then there exists an m such that for all x ∈ [0, 1] there exists an i ≤ m such that αi < x < β i. Heine-Borel vs. Fan Theorem ∀x ∈ [0, 1]∃i[(α)i < x < (β)i] → ∃m∀x ∈ [0, 1]∃i[i ≤ m ∧ (α)i < x < (β)i] ∀α ∈ β∃n[γ(αn) = 1] → ∃m∀α ∈ β∃n[n ≤ m ∧ γ(αn) = 1] Idea: identify a real number in [0, 1] with a path through a fan. Problem: not a 1-1 correspondence. Fan Theorem implies Heine-Borel Suppose for all x ∈ [0, 1] there exists an i such that (α)i < x < (β)i. Then for all x there exist i,n such that the nth approximation of x is between the nth approximation of (α)i and the nth approximation of (β)i: (α)i(n)00 < x(n)0 ≤ x(n)00 < (β)i(n)0 Then (by making n bigger): for all x there exist i,n such that i < n and the nth approximation of x is between the nth approximation of (α)i and the nth approximation of (β)i: (α)i(n)00 < x(n)0 ≤ x(n)00 < (β)i(n)0(decidable) So (Fan Theorem): There exists an m such that for all x ∈ [0, 1] there are n, i s.t. n ≤ m and i < n and (α)i(n)00 < x(n)0 ≤ x(n)00 < (β)i(n)0 Heine-Borel implies Fan Theorem Find a subset of [0,1] that does have a 1-1 correspondence with a fan: Cantor’s Discontinuum Cantor’s Discontinuum 22 ... ... 22 22 22 22 22 22 22 ( 31 , 23 ) 1 2 ( 13 , 32 ) 1 2 7 8 1 2 ( , ) ( , ) 5 10 1 (9,9) (3,3) −1 4 17 22 23 28 1 2 53 58 59 64 7 8 71 76 77 9 9 3 3 ( 81 , 81 )( 81 , 81 ) 1 2 ( 81 , 81 )( 81 , 81 ) ( 9 , 9 ) 1 2 ( 81 , 81 )( 81 , 81 ) ( 9 , 9 ) ( 81 , 81 () 81 , 1 81 ) 25 26 ( 13 , 32 ) 7 8 22 22 22 22 ( 27 , 27 ) (9,9) ( 27 , 27 ) ( 9 , 9 ) 7 8 19 20 22 22 22 22 ( , ) ( , ) 27 27 27 27 22 22 22 22 22 2 2 2 22 22 22 22 22 22 22 22 22 22 22 2 1 2 ( , ) ( 13 , 32 ) 1 2 −1 4 5 10 17 22 23 1 3 3 ( 27 , 27 ) ( 27 , 27 ) ( 27 , 27 ) ( 27 , 1 27 ) (3,3) 1 2 7 8 MMM MMM ( , ) ( , ) 9 9 9 9 MMM MMM z MMM MMM zz zz MMM MMM z zz z z MMM MMM zz zz MMM MMM zz zz z z MMM MMM zz zz M M zz zz ( −1 ,4) ( 59 , 1 91 ) ( 13 , 32 ) 9 9 WWWWWWWW q WWWWW WWWWW qqq q q WWWWW qq WWWWW qqq WWWWW q q WWWWW qq WWWWW qqq WWWWW q q WWWWW qqq WWW ( −1 , 1 13 ) 3 Definition Compactness Theorem * A valuation is a function from the basic formulas to {0, 1}. * A decidable set Γ of formulas is called lying when for every valuation v there exists an X in Γ such that v ∗(X) = 0. * Compactness Theorem for Propositional Logic For every decidable set Γ of formulas: if Γ is lying, then there is a finite lying subset of Γ. Compactness Theorem implies Fan Theorem A2 0 1 0 0 1 1 0 0 1 0 0 1 1 1 A1 A0 Compactness Theorem implies Fan Theorem A2 0 1 0 0 1 1 0 A0 /\ ~A1 −> A0 /\ ~A0 0 1 0 0 1 1 1 A1 A0 Compactness Theorem implies Fan Theorem A2 0 1 0 0 1 0 1 0 ~A0 /\ ~A1 /\ A2 −> A0 /\ ~A0 1 0 0 1 1 1 A1 A0 Compactness Theorem implies Fan Theorem Suppose γ is a bar. Define Γ := {X|∃a ∈ {0, 1}∗[γ(a) = 1 ∧ X = ^ (a)i {Ai }→A0∧¬A0]} i≤lg(n) Suppose v is a valuation. Determine an n s.t. γ(vn) = 1. Then v ∗( ^ (vn)i {Ai }) = 1 ,but v ∗(A0∧¬A0) = 0 i≤n (vn) i }→A ∧¬A ) = 0. So Γ is lying. So v ∗( i≤n{Ai 0 0 Then (Compactness Theorem): there exists a finite lying subset Γ0 of Γ. Now we can find a bound for the bar. V Equivalents of the (Weak) Fan Theorem From analysis * Every continuous function from {0, 1}N to N is u. continuous. * Every continuous function from [0, 1] to R is u. continuous. * Every continuous function from [0, 1] to R is bounded. * Every continuous function from [0, 1] to R is Riemann integrable. * Heine-Borel theorem. Equivalents of the (Weak) Fan Theorem From logic * Lindenbaum’s Lemma. * Completeness Theorem for propositional logic. * Compactness Theorem for propositional logic.