Download Foundational Questions Institute (FQXi)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Density matrix wikipedia , lookup

Jack Sarfatti wikipedia , lookup

Renormalization wikipedia , lookup

Basil Hiley wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

Scalar field theory wikipedia , lookup

Wave–particle duality wikipedia , lookup

Delayed choice quantum eraser wikipedia , lookup

Quantum dot wikipedia , lookup

Hydrogen atom wikipedia , lookup

Coherent states wikipedia , lookup

Path integral formulation wikipedia , lookup

Bell's theorem wikipedia , lookup

Quantum field theory wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Bohr–Einstein debates wikipedia , lookup

Quantum computing wikipedia , lookup

Copenhagen interpretation wikipedia , lookup

Quantum entanglement wikipedia , lookup

Quantum fiction wikipedia , lookup

Orchestrated objective reduction wikipedia , lookup

Renormalization group wikipedia , lookup

Many-worlds interpretation wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Quantum group wikipedia , lookup

Quantum machine learning wikipedia , lookup

EPR paradox wikipedia , lookup

Interpretations of quantum mechanics wikipedia , lookup

Quantum key distribution wikipedia , lookup

Quantum teleportation wikipedia , lookup

Quantum state wikipedia , lookup

Quantum cognition wikipedia , lookup

Canonical quantization wikipedia , lookup

History of quantum field theory wikipedia , lookup

T-symmetry wikipedia , lookup

Max Born wikipedia , lookup

Hidden variable theory wikipedia , lookup

Transcript
The Foundational Questions Institute (FQXi)
http://www.fqxi.org/community
FAQ
Mission
To catalyze, support, and disseminate research on questions at the foundations of physics and
cosmology, particularly new frontiers and innovative ideas integral to a deep understanding of
reality but unlikely to be supported by conventional funding sources.
Goals - FQXi has five goals:
To expand the purview of scientific inquiry to include scientific disciplines fundamental to a deep
understanding of reality, but which are currently largely unsupported by conventional grant sources
To redress incrementalism in research programming by establishing or expanding new
"islands" of understanding via flexible funding of high-risk, high-reward research in these areas
To forge and maintain useful collaborations between researchers working on foundational
questions in physics, cosmology, and related fields
To provide the public with a deeper understanding of known and future discoveries in these
areas, and their potential implications for our worldview
To create a logistically, intellectually, and financially self-sustaining independent Institute to
accomplish these goals during and beyond the initial four year program beginning in 2006, thereby
pioneering a new model of philanthropically-funded scientific research
FQXi therefore aims to support research that is both foundational (with potentially significant and
broad implications for our understanding of the deep or "ultimate" nature of reality) and
unconventional (enabling research that, because of its speculative, non-mainstream, or high-risk
nature, would otherwise go unperformed due to lack of funding).
Programs & Structure
In support of these goals, the Institute will offer a number of programs, including:
Grants: FQXi directs Grants through a Donor Advised Fund (DAF) at the Silicon Valley
Community Foundation. While the DAF administers the grantmaking program, FQXi
advises the DAF on what grants to make. Funding will be provided as research grants to
theorists and experimenters in support of personnel, equipment, travel, workshops, and
experiments; some funding will also target projects that effectively disseminate
information about foundational questions in physics and cosmology to laypeople.
Proposals will be subject to a standard competitive process of expert peer review similar
to that employed by national scientific funding agencies, and will target research unlikely
to be otherwise funded by conventional sources.
Mini-Grants: A number of Mini-Grants will be available each year via a streamlined
application process for travel, lecture programs, workshops, and other small projects
initiated by FQXi Members (only).
Contests: The Institute will support essay and other contests, with a number of prizes
awarded for a variety of subjects, with the purpose of identifying and supporting
pioneering thinkers, and stimulating interesting and innovative thinking on foundational
questions.
Conferences: Two or more international Conferences will be convened during the first
four years, to connect the Membership, share results, and disseminate supported
research to professionals and the public.
Structure
The Foundational Questions Institute (FQXi) is an international, diverse group of
visionaries in physics, cosmology, and closely related fields, which seeks answers to
foundational questions in these disciplines.
FQXi is a nonprofit organization that provides monetary, organizational, and intellectual
support for the study of foundational questions in physics and cosmology, in accord with
the FQXi Scientific Charter.
The Scientific Directorate provides the scientific leadership of FQXi; external reviewers
make funding decisions; the Advisory Council provides scientific and programmatic
oversight and counsel; the Institute receives legal and financial oversight from its Board
of Directors; and grantmaking oversight is provided through a Donor Advised Fund.
The Institute's activities are enhanced by the active participation of its Members.
Membership consists of all researchers funded by the Institute, as well as researchers
who are recruited as Members twice a year through nominations by the current
Membership.
Funding
Building on a generous seed grant from the John Templeton Foundation, the Institute is
expanding its support structure to include other donors with a vision consistent with that
of FQXi.
Large Grants
Open to Researchers and Outreach Specialists Worldwide
Approximately $7.4M in Grants have been awarded, in three
Large Grant RFPs (2006, 2008, and 2010). Large Grants are
awarded (through the FQXi Fund, a donor advised fund at the
Silicon Valley Community Foundation) as research grants to
theorists and experimenters in support of personnel, equipment,
travel, workshops, and experiments; some funding also targets
projects that effectively disseminate information about
foundational questions in physics and cosmology to laypeople.
Proposals are subject to a standard competitive process of expert
peer review similar to that employed by national scientific funding
agencies.
Awardee
Laurance Doyle
Institution
SETI Institute
Value
$25,000
Project Title
Is Quantum Knowability Subject to
Spacetime Warping?
Donald Marolf
University of California, Santa Barbara $35,100
Black hole information and firewall
singularities
Hector Zenil
Wolfram Foundation and LABORES
$41,531
MOOC Series Programme on Physical
and Computational Sciences. First
Series on the Physics of Information
Alexander Wilce
Susquehanna University
$42,400
Conjugates, Correlation and Quantum
Mechanics
Veronika Hubeny
Durham University
$43,000
Measures of Holographic Information
Keith Schwab
California Institute of Technology
$44,216
Mesoscopic Mechanical Resonators as
Quantum Noninertial Reference
Frames
Giulio Chiribella
Tsinghua University
$48,300
The fundamental principles of
information-dynamics
Steven Giddings
University of California, Santa Barbara $49,762
Information-theoretic foundations for
quantum spacetime and gravity
Noson Yanofsky
Brooklyn College
$49,924
The Algorithmic Information of
Categories
Jens Eisert
Free University of Berlin
$50,000
Decidable and undecidable in quantum
mechanics
Donald Spector
Hobart and William Smith Colleges
$50,000
Set Theoretic Forcing and Information
Theory
David Wolpert
Santa Fe Institute
$50,000
A Semantic Information-Theory Model
of Reality
William Wootters
Williams College
$50,000
Information and the origin of complex
amplitudes
Sumati Surya
Raman Research Institute
$58,000
In Search of Covariant Quantum Information
Ian Durham / Dean Rickles
Saint Anselm College / University of Sydney $59,762
Information and Interaction
Mark Van Raamsdonk
University of British Columbia
$61,060
Gravity and Information
Jonathan Oppenheim
University College London
$62,537
What are the laws of quantum
thermodynamics?
Caslav Brukner
Institute of Quantum Optics and Quantum
Information
$63,250
Quantum information without time and
without causal order
Adrian Kent
University of Cambridge
$72,589
Information Theoretic Characterization of
Quantum Reality
Gheorghe Paraoanu
Aalto University
$75,097
FACE-OFF
Jacob Biamonte
ISI Foundation
$86,700
inert vs. living matter: facing the ultimate
challenge of aggregate matter physics
Wojciech Zurek
Los Alamos National Laboratory
$87,000
Physics of Information and Quantum
Darwinism
Gerardo Adesso
The University of Nottingham
$90,000
Quantum Informational Framework for
Cybernetics
Philip Goyal
University at Albany (SUNY)
$93,127
An Information-Theoretic Approach to
Identical Particles in Quantum Theory
Raphael Bousso
University of California, Berkeley
$93,865
Information in Free Fall
John Barrow
University of Cambridge
$98,843
Reading Between the Lines: Information
about Information
Iosif Bena
Theiss Research
$106,538
Black Hole Information,
Microstates and Singularities
Woodrow Shew
University of Arkansas
$106,873
Physical Constraints on Mental
Information Capacity and
Information Output
Jonathan Barrett
University of Oxford
$119,888
Thermodynamic vs information
theoretic entropies in
probabilistic theories
Olimpia Lombardi
Theiss Research
$120,843
The nature of information for an
informational reformulation of
the modal-Hamiltonian
interpretation of quantum
mechanics
Patrick Hayden
Stanford University
$126,824
Entanglement, Monogamy and
Holography
Susanne Still / Gavin Crooks
University of Hawaii at Manoa / $129,524
Lawrence Berkeley National
Laboratory
Foundations of information
processing in living systems
Flavio Mercati / Tim Koslowski Perimeter Institute / University $139,650
of New Brunswick
Information, Complexity and
the Arrow of Time in Shape
Dynamics
Paula Apsell
The Nature of Reality
WGBH
$147,987
Otfried Gühne / Adan Cabello / University of Siegen /
$162,265
Jan-Åke Larsson
University of Seville / University
of Linköping
The nature of information in
sequential quantum
measurements
Joseph Emerson
Fundamental Tests of the
Structure of Quantum
Information with Neutron
Interferometry
TOTAL
University of Waterloo
$163,128
$3,003,483
Mini-Grants
Open to FQXi Members Only
Two rounds of Mini-Grants are available to FQXi Members each year via a streamlined
application process. Mini-Grants are suitable for travel, lecture programs, workshops,
and other small projects initiated by Members.
Awardee
Eugeny Babichev
Value
$1,150
Project Title
Participation at NEB 15 - ”Recent Developments in Gravity"
Eugene Lim
Institution
Laboratoire de Physique
Theorique d'Orsay
King's College London
$1,700
Information Theoretic Bounds on Cosmology
Gaurav Khanna
UMass Dartmouth
$2,000
Black Holes and Quantum Mechanics
Hector Zenil
LABORES
$2,400
Algorithmic Randomness and the Physics of Information
and Computation
Jeffrey Barrett
University of California, Irvine
$3,000
IPP Workshop on Gauge Symmetry
Maximilian Schlosshauer
University of Portland
$3,050
Quantum Physics and Information: A Single-Photon
Interference Experiment for Undergraduate Students
Hendrik Ulbricht
University of Southampton
$3,400
Optical Particle Detection and Alignment for Quantum
Superposition Experiments
Jenann Ismael
University of Arizona
$3,500
On the Relationship Between Physics and Phenomenology:
Why Bergson and Merleau-Ponty Are Relevant to the
Physics of Time
Sara Imari Walker
Arizona State University
$3,500
"Power of Information" Conference Proceedings
Edward Anderson
DAMTP, Cambridge
$5,000
Problem of Time Between Quantum Mechanics and
General Relativity
Jonathan Dowling
Louisiana State University
$5,000
Stefano Liberati
SISSA
$5,000
Closed Timelike Curves and Quantum Information
Processing
Experimental Searches for Quantum Gravity: A Conference
for Setting the Next Years' Agenda in Quantum Gravity
Phenomenology
George Musser
Nordita
$6,000
Workshop for Science Writers in Quantum Physics
Antony Valentini
Clemson University
$6,000
Quantum Cosmology with York Time
2010 Large Grant Awardees
2010
Awardee
Joanna Karczmarek
Institution
University of British
Columbia
Value
$40,000
Project Title
The nature of time, emergent
spacetimes and nonabelian
physics
Ted Jacobson
University of Maryland
$43,029
Growth of the vacuum in
quantum cosmology
Lee Smolin
Perimeter Institute
$47,500
Physical and
cosmological
consequences of the
hypotheses of the reality
of time
Joseph Polchinski
University of California, $54,329
Santa Barbara
Gauge/Gravity Duality
and the Emergence of
Time and Space
Wayne C. Myrvold
The University of
Western Ontario
$56,650
Quantum State
Evolution, Ontology, and
Relativity
Steven Giddings /
Donald Marolf
University of California, $60,862
Santa Barbara
Locality and the
emergence of space and
time
Gerard James
Milburn
The University $64,250
of Queensland
Deriving spacetime as a
relational consequence
of thermodynamics
Deriving spacetime as a relational consequence of thermodynamics
http://www.fqxi.org/grants/large/awardees/view/__details/2010/milburn
Project Summary Gerard James Milburn The University of Queensland
The standard view of physics, stretching back to Einstein, is that
time is described by a fundamental theory (general relativity),
while thermodynamics is a statistical theory which becomes valid in the
description of many particles. Most of the basic results of thermodynamics
rest on the preexistence of time, yet time itself is under the control of
Einstein's equations. This picture has been useful and compelling for a
long time, but a set of surprising results from the 1970's, 80's, and 90's
seems to be telling a different story. It is known, for example, that
Einstein's equations themselves can be derived as thermodynamic
relations. The deep meaning of such results remains a mystery to this day.
Our approach will be to push the implications of these results as far as
possible as we explore the possibility that time itself and space, as well,
are emergent thermodynamic quantities, rather than fundamental,
irreducible entities. This is a seldom-considered possibility that, if
successful, would re-order the relationship between the pillars of modern
physics.
Technical Abstract
One of the most surprising results in fundamental physics in the past
few decades is that the Einstein equations can be derived as an
equation of state. This result suggests the possibility that spacetime
itself may be thermodynamic in origin, and that the relationship between
thermodynamics and the fundamental theory of spacetime may not at all
be as it is ordinarily presumed. We review one line of reasoning known
as the "thermal time hypothesis" which describes time itself as an
emergent statistical quantity. After introducing this hypothesis, we
demonstrate a new result, which shows that this description of time can
be interpreted to possess a local time metric field for a broad class of
statistical states. We then outline a proposal for extending this approach
from time to spacetime with a local metric field, which will allow us make
the link to the known techniques for deriving the Einstein field equations
as an equation of state -- an approach which would effectively create a
new context in which spacetime is understood fully as an emergent
statistical phenomenon, with a macroscopic equation of state given by
the Einstein equation.
arXiv:1108.0883 [pdf, ps, other]
Clocks and Relationalism in the Thermal Time Hypothesis
Nicolas C. Menicucci, S. Jay Olson, Gerard J. Milburn
Comments: 11 pages, 3 figures
Subjects: General Relativity and Quantum Cosmology (gr-qc)
arXiv:0809.1907 [pdf, ps, other]
Quantum Connectivity of Space-Time and Gravitationally Induced
Decorrelation of Entanglement
T.C.Ralph, G.J.Milburn, T.Downes
Subjects: Quantum Physics (quant-ph)
arXiv:quant-ph/0505175 [pdf, ps, other]
Relational time for systems of oscillators
G.J.Milburn, David Poulin
Comments: Contribution to the Int. J. of Quant. Info. issue dedicated to the
memory of Asher Peres
Subjects: Quantum Physics (quant-ph); General Relativity and Quantum
Cosmology (gr-qc)
Relational time for systems of oscillators
arXiv:quant-ph/0505175
G.J.Milburn and David Poulin
The University of Queensland, Department of Physics,
School of Physical Science, Brisbane, Australia,
Abstract
Using an elementary example based on two simple
harmonic oscillators, we show how a relational time
may be defined that leads to an approximate
Schreodinger dynamics for subsystems, with
corrections leading to an intrinsic decoherence in
the energy eigenstates of the subsystem.
Quantum Connectivity of Space-Time and Gravitationally
Induced De-correlation of Entanglement
T.C.Ralph, G.J.Milburn and T.Downes
Department of Physics, University of Queensland, Brisbane 4072, QLD, Australia
(Dated: September 11, 2008)
We discuss an alternative formulation of the problem of
quantum optical fields in a curved spacetime using
localized operators. We contrast the new formulation
with the standard approach and find observable
differences for entangled states. We propose an
experiment in which an entangled pair of optical pulses
are propagated through non-uniform gravitational fields
and find that the new formulation predicts decorrelation of the optical entanglement under
experimentally realistic conditions.
Clocks and Relationalism in the Thermal Time Hypothesis
arXiv:1108.0883
Nicolas C. Menicucci,1 S. Jay Olson,2 and Gerard J. Milburn3
1Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
2School of Mathematics and Physics, The University of Queensland, Saint Lucia, QLD
4072, Australia 3Centre for Engineered Quantum Systems, The University of
Queensland, Saint Lucia, QLD 4072, Australia(Dated: August 3, 2011)
The Thermal Time Hypotheis (TTH) has been proposed as a general
method for identifying a time variable from within background-free
theories which do not come equipped with a pre-defined clock variable.
Here, we explore some implications of the TTH in an entirely relational
context by constructing a protocol for the creation of “thermal clocks”
from components of a large but finite quantum mechanical system. The
protocol applies locally, in the sense that we do not attempt to construct
a single clock describing the evolution of the entire system, but instead
we construct clocks which describe the evolution of each subsystem of
interest. We find that a consistency condition required for the evolution
of our clocks is operationally equivalent to the general relativistic
Tolman-Ehrenfest relation for thermal equilibrium in a static gravitational
field but without the assumption of gravity or a metric field of any kind.
ДИПОЛЬНАЯ ТЕМНАЯ ЭНЕРГИЯ
ПОДДЕРЖИВАЕТ РАСШИРЕНИЕ ХАББЛА
С УСКОРЕНИЕМ
Игорь Эдмундович Булыженков, [email protected]
МФТИ (www.mipt.ru), ФИАН (lebedev.ru)
Российский междисциплинарный семинар по
темпорологии
119991, Москва, Ленинские горы, 1-12, МГУ имени М.В.Ломоносова,
Биологический факультет, Кафедра общей экологии
22 апреля 2014
ПОРЯДОК ШАГОВ
ПРОТЯЖЕННАЯ
КЛАССИЧЕСКАЯ
ЧАСТИЦА В
НЕЛОКАЛЬНОМ МИРЕ
ПЕРЕКРЫВАЮЩИХСЯ
ПОТОКОВ ЭНЕРГИИ
ДРУГИХ ПРОТЯЖЕННЫХ
ЧАСТИЦ
ПРАВАЯ ЧАСТЬ
УР. ЭЙНШТЕЙНА
НЕ НУЖНА В
НЕПУСТОМ
(МАТЕРИАЛЬНОМ)
ПРОСТРАНСТВЕ
СКАЛЯР РИЧЧИ
ИМЕЕТ СМЫСЛ
ПЛОТНОСТИ
СКАЛЯРНОЙ
МАССЫ
МАТЕРИАЛЬНОГО
3х ПРОСТРАНСТВА
ГЕОДЕЗИЧЕСКОЕ
ДВИЖЕНИЕ В
НЕПУСТОМ 3х
ПРОСТРАНСТВЕ
ДАЕТ И
ОТТАЛКИВАНИЕ
Уравнение Эйнштейна в физике пустого
пространства 1916 года: поле и вещество
две качественно разные категории
THE EVOLUTION OF PHYSICS
A.Einstein and L.Infeld, NewYork, 1954
Москва, Наука, 1965. Глава 3. Поле и относительность.
Раздел: Относительность и механика, стр. 164.
«Классическая физика допускала две субстанции: вещество
и энергия. Первое имело вес, вторая была невесома. В
классической физике мы имели два закона сохранения: один
для вещества, другой для энергии. … Согласно теории
относительности нет существенного различия между массой
и энергией. Энергия имеет массу, а масса представляет
собой энергию. Вместо двух законов сохранения мы имеем
только один: закон сохранения массы-энергии.»
«Весит ли кусок нагретого железа больше, чем кусок
холодного? Теперь мы отвечаем ДА, а раньше отвечали
НЕТ.»
Глава 3, раздел: Поле и вещество, стр. 200
«Мы имеем две реальности: вещество и поле… Но что
является физическим критерием, разделяющим вещество и поле?
Раньше, когда мы не знали ОТО, мы пытались бы ответить следующим
образом: вещество имеет массу, в то время как поле ее не имеет. Поле
представляет энергию, вещество представляет массу.»
«Из ОТО мы знаем, что вещество представляет собой
огромные запасы энергии и что энергия представляет вещество. Мы не
можем таким путем провести качественное различие между веществом
и полем, так как различие между массой и энергией не качественное.
Гораздо большая часть энергии сосредоточена в веществе, но поле,
окружающее частицу, также представляет собой энергию, хотя и в
несравненно меньшем количестве. Вещество - там, где концентрация
энергии велика, поле - там, где концентрация энергии мала. Это
различие не качественное, а скорее количественное. Нет смысла
рассматривать вещество и поле как два качества, совершенно
отличные друг от друга. Мы не можем представить себе определенную
поверхность, ясно разделяющую поле и вещество.
Те же трудности вырастают для заряда и его поля.»
Глава 3, раздел: Поле и вещество, стр.201
«Не можем ли мы отказаться от понятия вещества и
построить чистую физику поля? То, что действует на наши
чувства в виде вещества, есть на деле огромная концентрация
энергии в сравнительно малом пространстве. Мы могли бы
рассматривать вещество как такие области в пространстве, где
поле чрезвычайно сильно. Таким путем можно было бы создать
основы новой философии. .. брошенный камень есть
изменяющееся поле, в котором состояния наибольшей
интенсивности поля перемещаются в пространстве со
скоростью камня. В нашей новой физике не было бы места и
для поля, и для вещества, поскольку единственной реальностью
было бы поле. … Нашей основной задачей было бы
модифицировать законы поля таким образом, чтобы они не
нарушались для областей, в которых энергия имеет
колоссальную концентрацию.
Заключение о том, возможно ли выполнить такую
программу принадлежит будущему. В настоящее время во всех
теоретических построениях мы все еще должны допускать две
реальности – вещество и поле.»
1) Int. J. Theor. Phys. 47, 1261-1269 (2008), “Einstein’s gravitation for
Machian relativism of nonlocal energy-charges”
2) Jour. Supercond. and Novel Magn. 22, 627-629 (2009), “Relativistic
quantization of Cooper pairs and nonlocal electrons in rotating
superconductors”
3) Jour. Supercond. and Novel Magn. 22, 723-727 (2009), “Superfluid massenergy densities of nonlocal particle and gravitational field”
4) J. Modern Physics, 3, N.10, 1465-1478 (2012), “Geometrization of Radial
Particles in Non-Empty Space Complies with Tests of General Relativity”
5) Bullet. Lebedev Phys. Inst., 41, N1, 1-5 (2014), “Densities of electron’s
continuum in gravitational and electromagnetic fields”
J Supercond Nov Magn (2009) 22: 723–727
Superfluid Mass-Energy Densities of Nonlocal
Particle and Gravitational Field
Физика непустого пространства:
вещество есть область плотного поля
От непустого гравитационного
пространства к протяженным
элементарным зарядам
Int. J. Theor. Phys. 47, 1261 (2008)
6 метрических связей и (10 - 6) =4
полевых степеней свободы в
уравнениях и интервале ОТО
Скаляр Риччи для плотностей активной (гравитационной)
и пассивной (инерционной) массы
Theor Int. Jour. Theor. Phys., v. 47, 1261, 2008
Bullet. Lebedev Phys. Inst., 41, N1, 1-5, 2014
“Densities of electron’s continuum in gravitational and electromagnetic fields”
Гравитационный потенциал сильных перекрывающихся
полей, формирующих области наблюдаемого плотного
«вещества» и разреженного энергетического континуума
- Принцип Эквивалентности
Строгое сохранение энергии перекрывающихся полей !!!
Дипольная природа темной части
энергии метрического пространства
(A+B)^2 = A^2 + B^2 + 2AB
A^2 + B^2 > 0
2AB > 0
Гравитационное притяжение и отталкивание
General equations
of motion in the
central static field,
c=1
J. Modern Physics, 3, N.10, 1465-1478 (2012), “Geometrization of Radial Particles
in Non-Empty Space Complies with Tests of General Relativity”
Radial fall from infinity
in weak and strong
static fields
Ускоренное расширение
Метагалактики
Расширение Хаббла
+ ускорение
Такая масса и приписывается Метагалактике !
The expansion rate of the Universe
Astronomers from the Sloan Digital Sky Survey Make the Most
Precise Measurement Yet of the Expanding Universe
Astronomers from the Sloan Digital Sky Survey have used
140,000 distant quasars to measure the expansion rate of the
Universe when it was only one-quarter of its present age. This
is the best measurement yet of the expansion rate at any
epoch in the last 13 billion years.
The Baryon Oscillation Spectroscopic Survey (BOSS), the
largest component of the third Sloan Digital Sky Survey (SDSSIII), pioneered the technique of measuring the structure of the
young Universe by using quasars to map the distribution of
intergalactic hydrogen gas. Today, new BOSS observations of
this structure were presented at the April 2014 meeting of the
American Physical Society in Savannah, GA.
СПАСИБО
[email protected]
И.Э. Булыженков
Like the Cooper pair,
each normal electron is
distributed with a finite
density n(x)
Relativistic Bohr-Sommerfeld Quantization
I.E. Bulyzhenkov, Jour. Supercond. & Novel Mag. 22, 627 (2009)