* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 21 - dewhozitz.net
Cre-Lox recombination wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Transcriptional regulation wikipedia , lookup
Silencer (genetics) wikipedia , lookup
Promoter (genetics) wikipedia , lookup
Community fingerprinting wikipedia , lookup
Gene expression profiling wikipedia , lookup
Genomic imprinting wikipedia , lookup
Ridge (biology) wikipedia , lookup
Transposable element wikipedia , lookup
Genomic library wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Non-coding DNA wikipedia , lookup
BIOL V04 Lecture - Genomes & Their Evolution (Ch 21) © copyright 2015 Marta D. de Jesus I. How are genomes sequenced? A. older method: 3-step process B. Whole genome shotgun approach (pioneered by J. Craig Venter) C. metagenome? II. How is this information collected and accessed? Bioinformatics A. databases 1. started with 2. GenBank a. genomics b. NCBI http://researchguides.library.wisc.edu/bioinformatics_help 3. other databases as well eg: proteomics 4. not all sequence information B. programs & online tools C. systems biology D. genes, proteins & genomes can be compared 1. to help find 2. to help find 3. to help determine a. when examining distant species b. when examining close species eg: FOXP2 4. compare between members of a species a. single nucleotide polymorphisms http://learn.genetics.utah.edu/content/pharma/snips/ b. copy number of genes (CNVs) http://www.nature.com/scitable/topicpage/Copy-Number-Variation-445 http://www.nature.com/scitable/topicpage/Copy-Number-Variation-and-Genetic-Disease-911 III. Genome comparison A. vary by total size 1. prokaryotes viruses 2. eukaryotes B. vary by # of genes 1. prokaryotes 2. eukaryotes 3. mismatch 4. helping to account for size mismatch 5. alternative splicing of RNAs http://www.nature.com/scitable/topicpage/eukaryotic-genome-complexity-437 IV. Eukaryotic non-protein coding DNA A. exons B. repetitive DNA 1. transposable elements & related sequences 2. transposon vs. retrotransposon eg: Alu elements http://www.nature.com/scitable/topicpage/functions-and-utility-of-alu-jumping-genes-561 3. transposons can carry 4. Barbara McClintock http://www.nature.com/scitable/topicpage/barbara-mcclintock-and-the-discovery-of-jumping-34083 5. transposable elements can a. promote b. change c. modify d. change 6. retrotransposons include ERVs 7. other repetitive DNA a. large-segment duplication b. simple sequence http://www.vivo.colostate.edu/hbooks/genetics/medgen/dnatesting/satellites.html 1) satellites 2) minisatellites 3) microsatellites = simple sequence repeats = short tandem repeats = variable number tandem repeats C. other non-coding DNA 1. introns & regulatory sequences 2. unique non-coding DNA V. Genes A. most are B. multigene families pseudogenes C. contributing to genome evolution 1. mutation 2. duplications a. vertebrates b. differences in chromosome structure c. differences in gene copy number 3. once multiple copies exist a. can be fine-tuned b. can be modified c. can become pseudogenes 4. exon shuffling D. comparing genomes in development (Evo-Devo) 1. homeotic genes 2. in metazoans: one set are the Hox genes eg: antennapedia complex contain a homeobox codes for a homeodomain unusual arrangement http://www.nature.com/scitable/topicpage/hox-genes-in-development-the-hox-code-41402 d. other model animals for vertebrates for mammals 3. in plants, there also are homeotic genes (Ch 35) a. Hox-like: KNOTTED-1 b. closest analog: Mads-box family of genes eg: flower organ identity NCBI organization - simplified (from: http://researchguides.library.wisc.edu/bioinformatics_help) NCBI’s actual 04/15 sitemap on next page