Download Slide 1 - Department of Zoology, UBC

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Amitosis wikipedia , lookup

Chemical synapse wikipedia , lookup

List of types of proteins wikipedia , lookup

NMDA receptor wikipedia , lookup

Killer-cell immunoglobulin-like receptor wikipedia , lookup

G protein–coupled receptor wikipedia , lookup

Purinergic signalling wikipedia , lookup

Chemotaxis wikipedia , lookup

Cannabinoid receptor type 1 wikipedia , lookup

Signal transduction wikipedia , lookup

Transcript
Slide 1
___________________________________
Sensory Receptors
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 2
___________________________________
Sensory Receptors
ÏRange from simple neurons to complex sense
organs
ÏTypes: chemoreceptors, mechanoreceptors,
photoreceptors, electroreceptors,
magnetoreceptors, thermoreceptors
ÏAll transduce incoming stimuli into changes in
membrane potential
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7.1
___________________________________
___________________________________
Slide 3
___________________________________
Sensory Receptors
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7.1
___________________________________
___________________________________
Slide 4
Classification of Sensory Receptors
ÏBased on stimulus location
ÏTelereceptors – detect distant stimuli, e.g.,
vision and hearing
ÏExteroceptors – detect stimuli on the outside
of the body, e.g., pressure and temperature
ÏInteroceptors – detect stimuli inside the body,
e.g., blood pressure and blood oxygen
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 5
Classification of Sensory Receptors
ÏBased on type of stimuli the receptors can detect
(stimulus modality)
ÏChemoreceptors – chemicals, e.g., smell and taste
ÏMechanoreceptors – pressure and movement, e.g.,
touch, hearing, balance, blood pressure
ÏPhotoreceptors – light, e.g., vision; detect photons
ÏElectroreceptors – electrical fields
ÏMagnetoreceptors – magnetic fields
ÏThermoreceptors - temperature
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 6
Receptors and stimulus
ÏLocation: Can distinguish the location of
the stimulus (touch, light or odour)
ÏDuration: Determine length of stimulus by
responding to the stimulus for the duration
of the stimulus.
ÏIntensity: Increase in action potential
frequency or increase in neurotransmitter
release.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 7
___________________________________
Sensitivity to Multiple Modalities
• Adequate stimulus – preferred or most sensitive stimulus
modality
• Many receptors can also be excited by other stimuli, if
sufficiently large, e.g., pressure on eyelid
perceive
bright light
• Polymodal receptors – naturally sensitive to more than
one stimulus modality, e.g., ampullae of Lorenzini in
sharks
• Nociceptors – sensitive to strong stimuli, e.g., pain; many
are polymodal receptors
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 8
___________________________________
Stimulus Encoding
Ï All stimuli are ultimately converted into action potentials
in the primary afferent neurons
Ï How can organisms differentiate among stimuli or detect
the strength of the signal?
Ï Sensory receptors must encode four types of information
ÏStimulus modality
ÏStimulus location
ÏStimulus intensity
ÏStimulus duration
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 9
___________________________________
Dynamic Range
•
•
•
•
Action potentials code
stimulus intensity through
changes in frequency, e.g.,
strong stimuli
high
frequency
Dynamic range – range of
intensities for which
receptors can encode stimuli
Threshold detection –
weakest stimulus that
produces a response in a
receptor 50% of the time
Saturation – top of the
dynamic range; all available
proteins have been stimulated
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7.4a
___________________________________
___________________________________
Slide 10
___________________________________
Range Fractionation
Relationships between stimulus
intensity and AP frequency
• Linear across large range of
intensities: large change in
stimulus causes a small
change in AP frequency
large dynamic range, poor
sensory discrimination
• Linear across small range of
intensities: small change in
stimulus causes a large
change in AP frequency
small dynamic range, high
sensory discrimination
Range fractionation – groups of
receptors work together to
increase dynamic range without
decreasing sensory
discrimination
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7.4b-c
___________________________________
___________________________________
Slide 11
___________________________________
Tonic and Phasic Receptors
Two classes of receptors that encode stimulus duration
• Phasic – produce APs only at the beginning or end of the
stimulus
encode changes in stimulus, but not stimulus
duration
• Tonic – produce APs as long as the stimulus continues
• Receptor adaptation – AP frequency decreases if stimulus
intensity is maintained at the same level
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 12
___________________________________
Tonic and Phasic Receptors, Cont.
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7.5
___________________________________
___________________________________
Slide 13
Pain
___________________________________
• Pain and itching are mediated by Nocireceptors
• Itch comes form Nocireceptors in the skin. Higher
pathways for itch are not well understood
• Pain is s subjective perception
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 14
Chemoreception
•
•
•
•
•
•
•
•
•
Most cells can sense incoming chemical signals
Animals have many types of chemoreceptors
Multicellular organisms typically use taste and smell
Olfaction – sense of smell
• Detection of chemicals carried in air
Gustation – sense of taste
• Detection of chemicals emitted from ingested food
Distinct due to structural criteria
Performed by different sense organs
Use different signal transduction mechanisms
Are processed in different integrating centers
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 15
The Olfactory System
Evolved independently in vertebrates and insects
Vertebrate olfactory system
• Can distinguish thousands of odorants
• Located in the roof of the nasal cavity
• Mucus layer to moisten olfactory epithelium
• Odorant binding proteins – allow lipophilic odorants to dissolve in mucus
• Receptor cells are bipolar neurons and are covered in cilia
• Odorant receptor proteins are located in the cilia
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 16
___________________________________
Odorant Receptors are G Proteins
• Each olfactory neuron expresses only one
odorant receptor protein
• Each odorant receptor can recognize more than
one odorant
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7.7
___________________________________
___________________________________
Slide 17
___________________________________
Pheromones
Vomeronasal organ – detects
pheromones
Structurally and molecularly distinct
from the primary olfactory
epithelium
• Location
• Base of nasal cavity near the
septum in mammals
• Palate in reptiles
• Transduction
• Activates a phospholipase Cbased signal transduction
system; adenylate cyclasecAMP in other olfactory
receptors
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7.8
___________________________________
___________________________________
Slide 18
Taste Buds in Vertebrates
___________________________________
Group of taste receptor cells
Located on tongue, soft palate, larynx, and esophagus;
external surface of the body in some fish
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 19
___________________________________
Taste Buds in Vertebrates
Ï 50 to 150 taste cells
Ï Epithelial cells that have apical and basal sides and joined by tight
junctions
Ï Life span of 10-14 days
Ï Basal stem cells divide to regenerate taste cells
Ï Microvilli on its apical surface that project into the mucus of the tongue
Ï Taste receptor proteins are found in the microvilli
Ï Chemicals are soluble and diffuse to the bind to their receptors
Ï Different cells in the same bud can detect NaCl, sucrose, H+ and quinine
(bitter)
Ï Taste cell forms a chemical synapse with a sensory neuron that projects
to the brain from the tongue
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 20
___________________________________
Taste buds and peripheral innervation
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7.11c-d
___________________________________
___________________________________
Slide 21
A generic taste cell.
ÏApical surface: both channels and G-proteincoupled receptors that are activated by
chemical stimuli
ÏBasolateral surface: voltage-gated Na+, K+,
and Ca2+ channels, as well as all the
machinery for synaptic transmission
mediated by serotonin
ÏThe increase in intracellular Ca2+ is either by
the activation of voltage-gated Ca2+ channels
or via the release from intracellular stores
causes synaptic vesicles to fuse and release
their transmitter onto receptors on primary
sensory neurons
ÏEach cell contains the standard complement
of neuronal proteins including Na+/K+
ATPase at the basal level, voltage-gated Na+
and Ca2+ channels, leak K+ channel
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 22
___________________________________
A generic taste cell…cont.
ÏThe response to the chemical is mediated by
the expression of receptors for that chemical
in the microvilli
ÏThe response is a depolarization of the cell
sometimes enough to generate an action
potential
ÏThe signaling of the cell to the sensory
neuron depends on a sufficient
depolarization to open the voltage-gated Ca2+
channels necessary for vesicle fusion and
neurotransmitter release.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 23
___________________________________
Transduction mechanisms
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 24
___________________________________
G-Protein-Coupled Receptors
*
*
*
*
*
*
*
**
*
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 25
G-protein and adenylate cyclase
* *
*
*
*
*
*
*
*
*
*
*
*
*
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 26
The inositol-phospholipid signaling pathway
___________________________________
You don’t have to memorize this ☺ weeeeeee
but be aware of it and know which taste is transmitted
using this pathway ie bitter
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 27
Salt taste
Ï The Na+ enters into the cell through the passive
amiloride-sensitive Na+ channel
Ï These proteins are found in frog skin and kidney
Ï Amiloride will block Na+ salt taste reception
Ï Entry of Na+ into the cell of course causes the
cell to depolarize
Ï Need a large concentration of Na+ to trigger a
sufficient depolarization to signal to the postsynaptic sensory neuron
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 28
___________________________________
Salt taste
___________________________________
*
___________________________________
*
___________________________________
*
___________________________________
___________________________________
___________________________________
Slide 29
___________________________________
Sour taste
Taste response produced by acids, excess protons (H+). These
positive ions enter the cell through a H+, cation specific ion channel
and in turn depolarize the cell to threshold for an action potential.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 30
___________________________________
Sour taste
___________________________________
*
*
*
*
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 31
Sweet taste
Ï There are specific membrane receptors for different sweeteners and sugars
Ï These receptors are not ligand gated ion channels but rather are
metabotropic receptors
Ï These receptors belong to the family of seven transmembrane domain
proteins that are linked to signaling cascades through G proteins.
In mammals a combination of the T1R2/T1R3 receptors have a response to
sugars and sweeteners
Ï These receptors stimulate a G protein (Gp) which in this case activates
phosopholipase C (PLC)
Ï PLC breaks down PIP2 (phosphatidylinositol 4,5-bisphosphate) into IP3
(inositol triphosphosphate) and DAG
Ï IP3 will bind to and activate a ion channel (TRP channel called TRPM5)
which allows Ca2+ to influx into the cell
Ï This pathway leads to a depolarization and threshold is reached to trigger
an action potential
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 32
Sweet taste
• In other animals sugars also appear to bind to receptors that stimulate G
proteins (Gs) that activate adenylate cyclase
• This results in an increase in cAMP in the cell that activates a protein
kinase (PKA) which in turn phosphorylates a K+ channel to close the
channel
• Once the K+ channel is close the cell will depolarize
___________________________________
___________________________________
___________________________________
___________________________________
• Both these signaling cascades are used in multiple biological systems
• In the nervous system neurotransmitter binding to specific metabotropic
receptors can trigger these cascades
• Photoreceptor and olfactory neurons also use parts of these cascades for
their sensory transduction
___________________________________
___________________________________
___________________________________
Slide 33
___________________________________
Sweet taste
*
*
*
___________________________________
*
*
___________________________________
*
___________________________________
___________________________________
___________________________________
___________________________________
Slide 34
Bitter taste
Different cells have different mechanisms of bitter taste transduction
1. In mammals the bitter receptor is a metabotropic receptor called T2R.
There are about 30 different subtypes in mammals
These signal through a G protein called gustducin to PLC and thus
generate IP3
Like sweet receptors the IP3 activates a TRPM5 channel to open and
allow Ca2+ to influx into the cell.
2. Some bitter chemicals such as quinine bind to and block specific K+
channels and thus result in depolarization of the cell
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 35
___________________________________
Bitter taste
*
___________________________________
*
*
*
___________________________________
___________________________________
*
___________________________________
___________________________________
___________________________________
Slide 36
Amino acid taste cells
In some animals (catfish) there are a high number of amino acid taste cells
There appears to be multiple ways that animals respond to amino aicds
1. In fish and other amphibians, amino acids such as L-arginine and Lproline bind to specific receptors which are ligand gated ion channels
2. In mammals there are taste cells that respond to L-glutamate. In these
cells L-glutamate activates a metabotropic receptor glutamate receptor
linked to a G protein. Glutamate binds to many different metabotropic
receptors and in taste cells it is the mGluR4 that is responsible for the
taste transduction
3. In mammals there are also two metabotropic receptors T1R1/T1R3 that
combine to respond to the standard 20 amino acids. This combination
signals through G protein activation of PLC and the generation of IP3
and the activation of the TRPM5 channel.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________