* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Real Numbers Determine if the number is rational (R) or irrational (I
History of trigonometry wikipedia , lookup
Georg Cantor's first set theory article wikipedia , lookup
History of mathematics wikipedia , lookup
Large numbers wikipedia , lookup
List of prime numbers wikipedia , lookup
Infinitesimal wikipedia , lookup
Proofs of Fermat's little theorem wikipedia , lookup
History of logarithms wikipedia , lookup
Location arithmetic wikipedia , lookup
Real number wikipedia , lookup
Approximations of π wikipedia , lookup
Real Numbers
Real Numbers { , 3, -8,
, π, -
, 7.9, 5. , 6.343434… ,
Rational Number: { , 3, -8,
, 9.27346587…}
, 7.9, 5. , 6.343434…}
Irrational Number:
*Repeating Decimal: a decimal with repeating digit(s).
*Terminating Decimal: decimal whose digits stop.
, π, -
, 9.27346587…
Non-perfect Square: a number whose root is
not a whole number. {
,
,
}
Integers: {…-3, -2, -1, 0, 1 ,2 ,3…}
Non-Repeating, Non-Terminating Decimal: A
decimal that continues forever and does NOT
repeat. { 9.3184…, 4.71932…, 0.8571…}
Whole Numbers: {0, 1, 2, 3…}
Counting Numbers: {1, 2, 3…}
Determine if the number is rational (R) or irrational (I). Support your answer:
if rational determine if the number is
if irrational determine if the number is
1. a terminating decimal or
2. a repeating decimal
Ex1
1. a non-perfect square or
2. non-repeating, non-terminating decimal
7.12 = R because it is a terminating decimal.
Ex2
= I because it is a non-perfect square.
1. 6.
_____________________________________________________
2. 9.4714…_______________________________________________
3. -
____________________________________________ ________
4.
5. 8.271…________________________________________________
6. -
7. π
8.
____________________________________________ ________
__________________________________________________
___________________________________________________
________________________________________________________
9. 1.23 ___________________________________________________
10. 5 ____________________________________________________
11. 0 ____________________________________________ _______
12.
13.
________________________________________________
14.
__________________________________________________
15.
________________________________________________
16.
___________________________________________________
17.
___________________________________________________
18.
___________________________________________________
19. -12.9_________________________________________________
_______________________________________________
20. 1.726…_______________________________________________
Page 1 of 2
Integer to Ratio
Terminating Decimal to Ratio
Repeating Decimal to Ratio
Simply place the
integer over one.
Simply say the number
mathematically.
Simply place the repeating decimal as the
numerator. The denominator consists of 9’s,
depending on how many numbers are
repeating..
2.4 “Two and four tenths.”
-8
2
=2
2.
= 11
2
2.
8.03 “Eight and three
hundredths.”
2.
8
2
= 2
2
Convert each of the rational number into ratios to prove they are indeed rational. Simplify when necessary.
21.
9.07
22.
25.
29.
33. 21.
-3.
23.
0.
24.
26.
27.
-
28.
30.
31. 8.
32.
34.
35.
36. 2
-5.
Place each number in the ONE appropriate box.
7.9
Irrational #’s
3
6.413…
0
21
1
100
4.02
0.3
Rational #’s
Integers
Whole #’s
Counting #’s
Page 2 of 2
0.3851…