* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Introduction 1.1 The Importance of Homeostasis in Maintaining
Protein moonlighting wikipedia , lookup
Model lipid bilayer wikipedia , lookup
Lipid bilayer wikipedia , lookup
Cytokinesis wikipedia , lookup
Organ-on-a-chip wikipedia , lookup
Cellular differentiation wikipedia , lookup
Cell membrane wikipedia , lookup
Signal transduction wikipedia , lookup
Gene regulatory network wikipedia , lookup
Introduction 1.1TheImportanceofHomeostasisinMaintainingCellularFunction. Organismsneedtobeabletomaintainnearlyconstantinternalenvironmentsinordertosurvive, growandfunctioneffectively(Guyton&Hall,2006).Homeostaticmechanismsresistchangesto theorganism'sinternalenvironment.Thesecomplexmechanismsarespecifictoeachindividual factor,andactviaoneoftwodistinctpathways:positiveandnegativefeedback.Intheyeast species,InternalpH,waterpotentialandtemperature(Walker,1998)areamongthemanyfactors wherebyhomeostaticmaintenanceisvitalfornormalcellfunction. Likeotherorganisms,yeastshavevariousphysiologicalrequirementstopermitnormalgrowth andsurvival.Yeastrequiressubstratesandenzymesforcellfunction,andthesearefoundin aqueoussolution(Walker,1998).Withouthighwaterconcentrations,enzymaticactivitywould ceaseandthereforeimpairnormalcellfunction.Differentyeaststrainsexhibitdifferenttolerance levelstochangesinwaterpotentialoftheyeastgrowthmedia.Forexample,Saccharomyces cerevisiae(S.cerevisiae)requiresawaterpotentialbetween-5to-20(Mpa)fornormalcell growth(Jennings,1995). 6 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. Yeastgrowthmediawithhighlevelsofexternalundissociatedorganicacidshaveaninhibitory effectonyeastgrowthasaresultoftranslocationacrossthecellmembrane,loweringthe intracellularpH(Walker,1998).YeastcellsinstationaryphaseareabletomaintainaconstantpH whenextracellularpHisdecreasing(Vallietal,2004). Oneofthemostimportantphysiologicalfactorsinfluencingyeastgrowthistemperature(Walker, 1998).Yeastspeciespossessoptimumgrowthranges,withbothminimumandmaximumgrowth temperatures.Deviationfromthesephysiologicalparametersleadstotheonsetofmechanisms thatmaintainhomeostasis,thusprotectingtheorganismfromirreversibledamage. 1.2TheUniversalEukaryoticHeatShockResponse Itiswellknownthatlivingeukaryoticcellspossessmechanismstoprotectthemselvesagainst changesinexternalenvironment(Mageretal,1993).Theseeukaryoteselicitacomplexresponse tothermalstressinordertoprotectthecellproteomefromdegradation.Firstobservedin DrosophilaMelanogasterbyRitosain1962,thisresponseisknownastheheatshockresponse (HSR).Wheneukaryoticorganismsaresubjectedtothermalstressi.e.temperaturesabove optimumgrowthandsurvival,cellularproteinsandnucleicacidsbecomedamagedashydrogen bondingandhydrophilicinteractionsaredisrupted(Walker,1998). Cellssubjectedtosub-lethaltemperaturesrespondbyincreasingthesynthesisofheatshock proteins(Craig,1985)duetoincreasedtranscriptionofheatshock(HS)genesTheseHSgenesare presentinalllivingorganisms(Khalawanetal,1997).HSgenesareinducedbytheactivationof heatshocktranscriptionfactors(HSF)(Sorger&Pelham1988)thatbindtoheatshockelements (Pelham&Beinz1982)atthepromoterregionsoftheHSgenes(Pelham,1982).Anumberof 7 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. otherstressingagentsarefoundtoinducemanyofthesameHSgenes,includingexposureto increasedethanolconcentrations,exposuretoheavymetal-ionconcentrations,(Parsell& Lindquist,1993)oxidativeandosmoticstress(Mager,Ferreira,1993). TheseHSgenesencodehighlyconserved,ubiquitousheatshockproteins(Hsps)thatactas molecular'chaperones'.TheseHspsbindtocellularproteinstocopewithdenaturationinduced bythermalstress(Federetal,1999).Theyactby"folding,trafficking,maturing,anddegrading" cellularproteins(Hashikawa,etal2004).Heatshockproteinsdisplayavarietyoffunctions.Hsps functiongenericallyby"assistingpolypeptidestoself-assemblebyinhibitingalternativeassembly pathwaysthatproducenonfunctionalstructures"(Ellisetal,1991).Hspsacttomaintainnormal cellularfunctions,andareinducedatdifferenttemperaturesindifferentorganisms(Lindquist, 1986). 1.3TheMolecularResponseInducedByHeatStress Theheatshockfactors(HSF)andheatshockelements(HSE)involvedintheHSRarehighly conservedtranscriptionalsequencespresentinnature(Hahnetal,2004).S.cerevisiaecontains manyofthesameHSgenesasotherorganisms.Thehsp70geneappearstohavebeenconserved throughoutevolutionandispresentamongstvariousorganisms,includingbothDrosophilaandS. cerevisiae(Lindquist,1984).S.cerevisiaehasthereforebeenutilisedasamodeleukaryotic organismtoattempttounderstandthemolecularmechanismsinvolvedinactivation,durationof responseandthefunctionsofheatshockproteins. Theheatshockresponseiscontrolledatthetranscriptionallevel.InS.cerevisiae,themolecular responsehasbeenhighlycharacterised.Investigationsonamolecularlevelhavehighlighteda 8 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. numberofcomplexprocessesandeventsdetailingthewholeresponse.Thephosphorylationstate oftheheatshocktranscriptionfactorinS.cerevisiae(ScHsf1)isfoundinthenucleusboundtoHSE undernormalconditions(Pelham&Jakobsen,1988).TwotranscriptionaldomainsnamelyAR1 andAR2locatedontheCandN-terminalofScHsf1haveactivationdomainsthatarerepressed undernormalconditions.Ithasbeenfoundthathyper-phosphorylationoftheC-terminalofthese activationdomainsresultsinactivationofScHsf1andsoinductionofHSgenes(Hashikawaetal, 2004).ScHsf1belongstoafamilyofwingeddomainproteins(Littlefieldetal,1999).These 'wingeddomains'areknowntointeractwithDNA.Morespecifically,'wingeddomains'interact upstreamofthetranscriptionstartsitesofgenesencodingHsps;thesepromotersarecalledHSE. ThesewingeddomainsareimportantforoptimalbindingtoHSEs(Ciceroetal,2001).Anincrease intheexpressionofHspgenes,resultinaconcomitantincreaseinHspmRNAs,whichmaythen subsequentlybetranslatedintoHsps.ThesynthesisofHspmRNAandHspspeak10-20minutes aftercellsaresubjectedtoheatshock(Broachetal,1992). Hspspossessavarietyoffunctionsinprotectingthecellfromproteindegradation.Thenamesand functionsofthemajorHspsinS.cerevisiaehavebeensummarizedinthetablebelow. FunctionsoftheMajorHeatShockProteinsinS.cerevisiae. HeatShockProtein Hsp104 Hsp83 Hsp70Family Hsp60 ProposedPhysiologicalFunction Acquisitionofstresstolerance.Constitutivelyexpressed inrespiring,notfermentingcellsandonentryinto stationaryphase. Chaperone(s)function. Interactwithdenatured,aggregatedproteinsandassists insolubilisingthemwithsimultaneousrefolding(i.e. chaperones(s)function).Alsoinvolvedinposttranslationalimportpathways. SimilartoHsp70,Thischaperoninfamilyfacilitateposttranslationalassemblyofproteins.Hsp60facilitatesthe 9 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. SmallHsps Hsp30 Hsp26 Hsp12 foldingandassemblyofunfoldedproteinsinanATPdependentmannerbydirectlybindingtotheunfolded protein(Craig,1994). Cellularrolestillelusive,butmaybeinvolvedinentry intostationaryphaseandtheinductionofsporulation. Hsp30mayregulateplasmamembraneATPase. Table1.FunctionsofmajorheatshockproteinsinS.cerevisiae.Adaptedfrom:Walker,G (1998).YEASTPhysiologyandBiotechnology.WestSussex,England:Wiley&SonsLtd.151 DespitedetailedmolecularcharacterisationoftheresponseinS.cerevisiaethetriggerfor activationofthetranscriptionfactorhasnotyetbeendiscovered.Asaresult,theregulatorofthe molecularHSRisunknown. 1.4TemperatureastheDirectInduceroftheHeatShockResponse. TheHSRisaresponsetosub-lethaltemperatureasameansofprotectionfromthermaldamage (Sorger&Pelham1988).S.cerevisiaecharacterisesanormaltemperaturerangebetween35-43°C (Walker,1998)containingminimum,maximumandoptimumtemperatures(T min,Tmax,andTopt). Itisthereforereasonabletoinferthatthermalstressingagentsareresponsibleforinductionof theHSR.Exposuretosub-lethaltemperatures,resultinproteindenaturationanddamage.Cells respondtothepresenceofthermallydenaturedproteinsandinducearesponsetosynthesise Hsps.Untilthelateeightiesthe'classical'viewwasinfactthattemperatureitselfwasthoughtobe thedirectinduceroftheHSR(Lindquist,1986).Severalstudiesprovidedevidenceinfavourof this.IfthereweresecondarymessengersinvolvedinHsptranscriptionotherthantemperature, thentemperaturewoulddamagethesesecondarymessengersandhenceaffecttranscription. VariousstudiesdemonstratedthelackofsecondarymessengersininductionoftheHSR.When 10 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. heatshockedcellsaresubjectedtonormaltemperatures,theydonotimmediatelyceaseto synthesiseHsps(Lindquist,1981).Thelackofasecondarymessengerintranscriptional regulationcontributedtotheideaoftemperatureastheprimarytranscriptionaltrigger. 1.5TheTransientNatureoftheHeatShockResponse,andtheAbilitytobeinducedby OtherStressAgents. Despitethereasonableargumentthattemperatureactsasthetrigger/induceroftheheatshock response,thediscoveryofakeyphenomenonintheHSRcontradictedthis'classicallyheld'view (Lindquist,1986).TheHSRwasdiscoveredtobehaveintransientmanner(Miller,etal,1990). Whensubjectedtosub-lethaltemperatures,theHSRwasfoundtodiminishwithinonehourof inductionandreturntonormalproteinsynthesis(Milleretal,1990).MorespecificallyintheS. cerevisiaetranscriptionfactor(ScHsf1)theN-terminalregionoftheAR2domainofScHsf1was foundtohaveseparablepropertiestotheC-terminalregion,inthatitwasabletoinducea transientresponse(Sorger,1990).Thediscoveryofthisphenomenonchallengedtheideaof temperatureasadirecttriggeroftheHSR.TheveryfactthatthenatureoftheHSRistransient, suggeststhatthetriggerfortheHSRis'short-lived'. Temperature,bydefinitioncannotactasthetriggerfortranscriptionalactivationoftheHSR. TemperatureisaconstantfactorintheHSR.Ifindeedtemperaturedoesactasadirect transcriptionaltrigger,itshouldlogicallyresultinaconstantheatshockresponse,andtherefore nodiminutionoftheresponseshouldbeobserved.However,thisisnottheobservedresponse (Miller,etal1979).Asaresult,itislogicaltosuggesttemperaturepossiblyplaysanindirectrole inHSRinductionbutnotadirectrole.Thisdiscoverychallengedexistingideasandfurthermore 11 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. developedresearchtargetswiththeaimofdiscoveringthe'directtrigger'ofthisuniversalstressresponse. (Milleretal,1979)presentedevidencetocharacterizeatransientHSR.Itcanthereforebeargued thatthemechanismthatsensestemperaturebecomesdesensitizedovertime.Another phenomenondescribed,indicatesthatorganismsexposedtomildheatshockexhibitinduced thermotolerance(Parsell&Lindquist,1993).S.cerevisiaecellssubjectedtobriefheatshockat mildtemperatures,exhibitresistancetothermaldenaturationatotherwiselethaltemperatures. CellssubjectedtoHSat37°CdisplayatransientHSR.Whenbrieflyexposedtolethal temperatures,thesecellsexhibitresistancetothermaldamageasaresultofinduced thermotolerance(McAlister&Finkelstein,1980) Furthermoreinthepresenceofethanol,theHSRincreasesinsensitivityasthetemperature requiredformaximalHSinductionisdecreased(Curran&Khalawan,1994).Plasmamembrane ATPaseactivityinfluencestheHSR(Panaretou&Piper,1990)aswellasosmoticstress(Varelaet al,1992).MorespecificallyHsp-104hasshowntoplayanimportantroleinthermotolerance, includingcellswithmutatedHsf1.(Lindquistetal,1996).Neitherthetransientresponseor ethanolsensitivephenomenonsupportstheclassicalideathatorganismsresponddirectlyto thermallydenaturedproteins,toinducetheHSR.Instead,theseconceptssuggestthatthe'primary sensor'thatdetectscellularproteindenaturationisanactive,adaptabletrigger(Chatterjeeetal, 1997)thatisabletochangetovarysensitivityoftheHSRtothesametemperature (thermotolerance). 12 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. 1.6Evidencetosuggesttheheatshockresponseislipidmediated(S.cerevisiae). InductionoftheHSRinvolvesphosphorylationandthereforeactivationofSchsf1.HSisalso inducedattemperaturesspecifictoeachindividualcell(Carratuetal,1996).Howeverthe phosphorylatingagentisunknown.ThemolecularstructureofthecellmembraneinS. cerevisiaewasinvestigatedasapotentialregulatorofHSRinduction.Commonphysiological responsestoachangeinexternalenvironmentalconditionsconsistoflipidmembrane reorganizationandmodification(Rogers&Glasser,1993).Responsestotemperaturechanges areknowntoinvolvefattyaciddesaturation.(Lee&Cossins,1990).S.cerevisiaewasuseda modeltodeterminewhethertheHSRislipidmediated.Exposureofatemperaturesensitive strainofS.cerevisiaetosaturatedfattyacids(SFA)resultedinanincreasedtranscriptionofHS genetranscriptionat37°C,andadditionofunsaturatedfattyacids(UFA)downregulatedHS genetranscription(Carratuetal,1996). Furtherinvestigationsdevelopedthesefindingstolinkcellularlipidconformationsas responsiblefordesensitisationandthereforethetransientnatureoftheHSR.Unsaturated fattyacid(UFA)levelsweremonitoredduringsub-lethalheatshockatvaryingtemperatures (Chatterjeeetal,1997).Followingashiftintemperatureofyeastcellsfromoptimumtosublethaltemperatures,anincreaseincellularfattyacidunsaturationisassociatedwithan increasedtemperatureatwhichmaximalHSoccurs.Unsaturatedfattyacidlevelsandthe maximalHSRbothdeclinewhenreacclimatizedfromsub-lethaltooptimumtemperatures (Khalawanetal,1996).ThesefindingsdemonstratedthatdensitisationoftheHSRwaslinked toUFAcellularlevels.FurthermorefindingssuggestedthekineticsofUFAlevelswere consistentwiththekineticsfordownregulationofHSgeneinduction,thetransientresponse (Khalawanetal,1996). 13 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. WithevidenceproposinglinksbetweenUFAlevelsandHSinduction,itcanbereasonedthat UFAlevelsplayaregulatoryroleintheHSR.InS.cerevisiaetheOLE1geneencodesthedelta-9 desaturaseenzymeresponsibleforfattyaciddesaturation(Stukey,etal,1990).IfUFA desaturationactsasthe'primarysensor'inHSgenetranscription,knockoutoftheOLE1gene wouldresultinaninabilityoffattyacidstobecomeunsaturated.Ifthecellularlipidsremain saturatedandifdesaturationisthetriggerforHSdownregulation,aconstantlysaturatedFA cellularprofilewouldresultintheinabilityoftheHSRtobedownregulated.TheHSRwould remainconstant,thereforehighlightingUFAlevelsasresponsibleformediatingthetransient natureoftheHSR. 1.7YeastCharacteristicsandCellMembranePhysiology "Yeastsareascomycetousorbaidomycetousfungithatreproducevegetativelybybuddingor fission,andthatformsexualstateswhicharenotenclosedinafruitingbody."(Boekhoutand Kurtzman,1996).Yeastcellmembranesactsasimpermeablebarriersagainsthydrophilic moleculestopreventthemixingofthecytoplasmandexternalenvironment.Around7.5nthick, thecellmembraneiscomposedofalipidbilayer(Walker,1998).Aswithalleukaryotic membranes,thelipidbilayercontainsglobularproteinsdispersedthroughoutalipidmembrane, toformafluidmosaicstructure(Nicholson&Singer,1972).Thecellmembraneconsistsof discontinuousamphipathiclipidbilayers,withthepolarhydrophobictailsfacinginternally,and theirnon-polarhydrophilicheadsfacingoutwards. Bothintegralandmembranespanningproteinsarefounddispersedthroughoutthemembrane. Proteinsplayaroleintransportthroughactingascarrierorchannelproteins(Guyton&Hall, 14 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. 2006).Forexample,theprotonpumpingplasmamembraneATPase,utilizesATPtoexpelcellular proteinstocreateanelectrochemicalgradientfornutrientuptake(Cooteetal,1994).Thelipid bilayerisprimarilycomposedofphospholipids,mainlyphosphatidylcholineandsterols(Walker, 1998).Thephosphatidylcontentincreasedbyapproximately10-foldinS.cerevisiae(Walker, 1998).Sterolsstabilizethelipidbilayerwhereasphospholipidsaddfluidity(Walker,1998).The selectivepermeability,mediatedbycertainproteinsandlipidsexhibitinghydrophobicand hydrophilicinteractions(Nicholson&Singer,1972)ofthesemembranesservetocontrolwhat canenterandleavethecell. LipidComponentsOfThePlasmaMembrane Figure1.Lipidcomponentsoftheplasmamembrane.Theouterleafletconsistspredominantlyof phosphatidylcholine,sphingomyelin,andglycolipids,whereastheinnerleafletcontains phosphatidylethanolamine,phosphatidylserine,andphosphatidylinositol. Cholesterolisdistributedinbothleaflets.Thenetnegativechargeoftheheadgroupsof phosphatidylserineandphosphatidylinositolisindicated. Adaptedfrom:Cooper,GM(2000).StructureofthePlasmaMembrane,TheCell:AMolecular Approach.2nded.SunderlandMA:SinauerAssociates.1. 15 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. Thecellmembranehasavastrangeoffunctions,ofwhichthemainonesarementionedbelow withrelevantexamples. MainFunctionsoftheCellMembraneinS.cerevisiae. RelevantExamplesWhereThisIs FunctionsOfTheYeastCellMembrane Shown AphysicalbarriertopreventthemixingofPlasmamembraneprotonpump(ATPase) aqueousandcytoplasmicmolecules,andtoisvitalinexpellingcellularproteinsin controlwhatentersandleavesthecell.ordertocreatetheelectrochemical Membraneproteinsmediatethisresponse.gradientneededforuptakeofessential solutes(e.gH+K+Ca2+ CellSignalling.InS.cerevisiaePhosphatidylinositol4,5-bisphosphateis phosphoinositidephopsphorylationformsresponsibleforrolesincellular moleculesthatarefurtherbrokendowntoproliferation. formmoleculesthatactassecondary messengersinmajorsignalingpathways. Exocytosis Endocytosis Secretoryvesiclesaresecretedbythe GolgiapparatusandtheEndoplasmic Reticulum.Thesevesiclesfusewiththe plasmamembranetoexpeltheunwanted molecule. Endosomesinternalizestructures requiredbythecell.Invaginationsfrom thecellmembraneare'pinched'awayto formvesiclesthatarethentransported throughthecytoplasm.InS.cerevisiae thisprocessisimportantininternalizing matingpheromes. Table2:MainFunctionsoftheCellMembraneinS.cerevisiae..Source:Walker,G(1998).YEAST PhysiologyandBiotechnology.WestSussex,England:Wiley&SonsLtd.19-21. 1.8PrinciplesofOsmosis 16 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. Osmosisiscommonlyknownasthemovementofparticlesthroughasemi-permeablemembrane, fromareasofhighwaterpotential(lowsoluteconcentration)toareasoflowwaterpotential(high soluteconcentration).Thefactthatthecellmembraneissemi-permeableallowstheexistenceof thisphenomenon.(Roseetal). Duetothesmallsizeofwatermolecules,theyexistathighconcentrationsinsolution.Purewater existsataconcentrationof55.4Mat20°C)(Roseetal).Thishighconcentrationdoesn'tappearto bedramaticallyalteredinsolutionsmixedwithothersolutes.Itistheassociationofwater moleculeswiththesesolutesthatchangethestateofwater.(Roseetal).Achangeinthestateof wateraffectstheamountofthermodynamicallyavailablewater.Thewaterpotentialisdefinedas "thefunctionoftheconcentrationofsoluteparticles."(Roseetal). OsmoticpotentialsinS.cerevisiaewerededucedbydegradingthecellwalltoformprotoplasts. Investigationshighlightedthataprotoplastconcentrationof0.5M,equivalenttoawaterpotential of-1.5mpawassufficienttomaintainnormalturgorpressure,andnormalcellularstructure.(Rose etal).Externalwaterpotentialandcellularosmoticpotentialformthebasisofturgorpressure: pressureofthecellconstituentsagainstthecellwalloftheorganism. 1.9UsingOsmosistoInduceStructuralChangestoYeastCellMembranes Evidence(seesection1.7)clearlyillustratesthatthecellmembraneofyeasts,andalleukaryotes arevitalinperformingessentialcellularfunctions.Lipidsformanintegralpartofthecell membrane,structureandfunction.Evidence(seesection1.6)suggeststhetransientHSRislipid mediated,(Chatterjeeetal,1997).Changingthestructureoftheyeastcellmembranewould disruptlipidstructureandmetabolism.IftheHSRislipidmediated,thenchangestocellularlipid 17 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. content,wouldhaveaneffectontheHSR.Toexperimentallyinducethesestructuralchanges,cells couldbesubjectedtoosmoticshock,followedbyHStomonitorchangesintheHSR. 1.10UtilisingGeneDeletionTechniquesToMeasureHeatShockRegulation Homologousrecombinationistheabilityofanorganismtoexchangenucleotidesequences betweensimilarsectionsofDNA.Thischaracteristichasbeenexploitedtoformthebasisofgene deletiontechnology.Homologousrecombinationcanbeutilisedtopinpointregulationofcellular responsesonamolecularlevel.MethodsweredevelopedtoenablefragmentsofDNAtobe integratedintothegenomeofcells(Tropp,2004)toknockoutaparticulargene:eitherviagene replacementorgeneinsertion(Tropp,2004).Genereplacementinvolvesthereplacementofthe wholecodingsequenceofatargetgenewithaselectablemarker.Thisresultsingeneknockout anddisruptionofgenefunction.Knockoutgenesarereplacedwithacodingsequencethatcanbe detected.SequencehomologybetweentherecipientgeneandtheDNAfragmentenabletheDNA constructtointegrateatthegeneyouwishtoreplace. ConstructionoftheDNAfragmentcanbepreparedviaPCRmethods.Primerscontain approximately'50bpofhomologytothegeneofinterestand20bofhomologytotheselectable marker'(Tropp,2004)resultinginaPCRproductwith50bpofsequencehomologytothegene targetedforknockout. TheOLE1genecanbesubjectedtogenedeletionviathesamemethodology.Usingtheamplified HIS4genethathasbeendesignedtosharesequencehomologywiththeOLE1gene,theOLE1gene canbedeleted.InsertionoftheHIS4DNAfragmentintotheS.cerevisiaeDBY747lacZstrainresults 18 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. inhomologousrecombinationtoreplacetheOLE1gene.TheHIS4geneencodestheaminoacid histidine.TheoriginalDBY747lacZstraincannotgrowonmedialackinghistidine,leucine,or tryptophanastheplasmiddoesnotcontainthegenesabletosynthesisetheaminoacids. However,replacementoftheOLE1genewithHIS4resultsintheabilityoftherecombinant plasmidtosynthesishistidine.Thisresultsinthefollowingphenotypes: 1.Wild-typeDBY747lacZphenotype:His -Leu-Tryp2.Mutant-DBY747lacZphenotype:His +Leu-TrypHIS4isthenusedasadetectablemarkerasitisknownthatthemutant-DBY747lacZstraincan synthesiseitsownhistidine,andcanthereforegrowonmedialackinghistidine,onlyrequiring leucineandtryptophan. HavingsuccessfullyknockedouttheOLE1gene,themutantstaincanbetestedforexpected behaviourstoindicatewhetherofnotthetransientnatureoftheHSRislipidmediated(see section1.6). 1.11AimsandHypotheses Theaimsofthisprojectaretwofold.Evidencesuggeststhatthetransientnatureoftheheatshock responseappearstobelipidmediated.'Knockingout'theOLE1generesponsibleforthistransient natureandmonitoringforanexpectedchangeinheatshockactivity,couldestablishwhetherthis isthecase,onamolecularlevel.Secondly,cellsunderosmoticstressundergophysiological changesacrossthecellmembraneandinothercellcomponents.Iftheheatshockresponseislipid mediated,structuralchangestotheselipidsasaresultofosmoticstressshouldinduceachangein thedynamicsoftheHSR. 19 InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae. Theprojectaimsleadstothefollowingtwohypotheses: 1.DoestheknockoutoftheOLE1geneaffecttheheatshockresponse?Ifso,istheOLE1gene responsibleforthetransientnatureoftheHSR? 2.IstheHSRaffectedwhenlipidstructureandmetabolismaredisruptedinS.cerevisiaevia osmoticpressurechanges?