* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Problem Set 11 Solutions - Illinois State Chemistry
Renormalization wikipedia , lookup
X-ray fluorescence wikipedia , lookup
Nitrogen-vacancy center wikipedia , lookup
Ising model wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Matter wave wikipedia , lookup
Wave–particle duality wikipedia , lookup
Ferromagnetism wikipedia , lookup
Renormalization group wikipedia , lookup
Molecular orbital wikipedia , lookup
X-ray photoelectron spectroscopy wikipedia , lookup
Spin (physics) wikipedia , lookup
Molecular Hamiltonian wikipedia , lookup
Particle in a box wikipedia , lookup
Electron scattering wikipedia , lookup
Tight binding wikipedia , lookup
Atomic theory wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Atomic orbital wikipedia , lookup
Hydrogen atom wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Chemistry 362 Dr. Jean M. Standard Problem Set 11 Solutions 1. Use the Pauli and Aufbau principles, along with Hund's Rule of maximum multiplicity, to draw orbital energy diagrams for the ground states of the Si and P atoms. Classify the multiplicity of the ground states of the Si and P atoms as singlet, doublet, triplet, or quartet. 2 2 6 2 2 Using the Pauli and Aufbau Principles, the electron configuration of Si is 1s 2s 2 p 3s 3p . 2 2 6 2 3 The electron configuration of P is 1s 2s 2 p 3s 3p . € Orbital energy diagrams for Si and P are shown below. Note that using Hund's rule of maximum multiplicity, the electrons in the 3p orbitals are placed in different orbitals and have the same electron spin. € Atomic Energy Levels of Si Atomic Energy Levels of P 3p 3p 3s 3s 2p E 2p E 2s 2s 1s 1s For Si, placing two electrons in the 3p set of orbitals leads to two unpaired electrons. Thus, the total spin of the two unpaired electrons is S=1, and therefore the multiplicity is 2S+1 = 2·1+1 = 3. Therefore, the multiplicity of the ground state of Si is a triplet. For P, placing three electrons in the 3p set of orbitals leads to three unpaired electrons. Thus, the total spin of the three unpaired electrons is S=3/2, and therefore the multiplicity is 2S+1 = 2·(3/2)+1 = 4. Therefore, the multiplicity of the ground state of P is a quartet. 2 2. A researcher employs the following function to represent the spatial part of the ground state wavefunction of the Li atom, ψ (1,2,3) = χ1s (1) χ1s ( 2) χ 2s ( 3) . Here, χ1s or χ 2s is shorthand notation used to refer to the spatial form of the atomic orbital; for example, € € $ 1 '1/ 2 χ1s (1) = & 3 ) e − r1 / a o . % πa o ( € Does the form given above for the Li atom correspond to an acceptable spatial wavefunction? Explain. € 2 1 No, it is not an acceptable function. The electron configuration of the ground state of Li is 1s 2s , so the atomic orbitals used to construct the function are correct. However, for example, the function specifically places electron 3 in the 2s orbital; thus, the function distinguishes between the electrons. An acceptable function would allow for electron1, 2, or 3 being placed in the 2s orbital. Shown below is an example of an acceptable spatial wavefunction that does not distinguish between the electrons: ψ (1, 2, 3) = 1 [ χ1s (2) χ1s (3) χ 2s (1) + χ1s (1) χ1s (3) χ 2s (2) + χ1s (1) χ1s (2) χ 2s (3)] . 3 This function places each of the three electrons in the 2s orbital, so it does not distinguish. This example spatial wavefunction happens to be symmetric with respect to interchange of electrons. When constructing the full € wavefunction for Li, including spatial and spin components, this symmetric spatial wavefunction would have to be combined with an antisymmetric spin wavefunction so that the overall wavefunction was antisymmetric and satisfied the Pauli Principle. 3. Determine the possible atomic term symbols arising from a d1 electron configuration. 1 Since the d electron configuration only involves one outer electron, the total orbital angular momentum quantum number L and total spin angular momentum quantum number S are identical to the orbital and spin angular momentum quantum numbers of the outer electron. Thus, S = s1 = 1 2 and L = ℓ1 = 2. 2 The multiplicity 2S+1 is therefore 2 (a doublet) and the term corresponds to a D term. Then, all that is needed is to determine the total angular momentum quantum € number J. The total angular momentum quantum number € 2 L − S L + S D J ranges from to . For the term, L=2 and S = 12 leads to J = 32 , 52 . € 1 Therefore, the possible term symbols for the d electron configuration are 2 D3/ 2 and 2 D5 / 2 . € € € € € € € 3 4. 8 1 1 1 3 3 The following terms arise from a d electron configuration: S, D, G, P, F. Use the first two of Hund's rules to properly order these terms according to energy. Then, determine the term symbols arising from each term, and use the third Hund's rule to complete the energy ordering. Hund's Rules #1 and 2 allow us to order the terms according to increasing energy: 3 € € F < 3P < 1G < 1D < 1S . 3 Hund's Rule #1 tells us that both the triplet terms ( P and 3 F ) will be lower in energy than the singlet terms ( 1 1 1 S , D , and G ). Hund's Rule #2€tells us that among the triplets, the one with the highest L value will be 3 3 lowest energy ( F < P ), and similarly among the singlets, the one with the highest L will have the lowest € 1 1 1 € energy ( G < D < S ). € Next,€the complete term symbols for each term may be determined: € 3 3 3 For 3 F : L = 3 and S = 1 leads to J = 2, 3, 4 and term symbols F2 , F3 , F4 . € For 3 € P : L = 1 and S = 1 leads to J = 0, 1, 2 and term symbols 3 P0 , 3P1, 3P2 . € € € 1 For 1G : L = 4 and S = 0 leads to J = 4 and the term symbol G 4 . € € € € For 1 D: € € L = 2 and S = 0 leads to J = 2 and the term symbol 1D2 . € € € € 1 For S : L = 0 and S = 0 leads to J = 0 and the term symbol S0 . € € € € 1 € 8 Finally, Hund's Rule #3 may be used to order the term symbols with each term. Since the d electron € configuration corresponds to a shell the term symbol with the highest J value will € € € that is greater than 1/2 filled, € 3 3 3 3 3 be lowest in energy. Therefore, for the F term, the energy ordering is F4 < F3 < F2 , and for the P term, 3 3 3 the energy ordering is P2 < P1 < P0 . € To summarize, the overall energy ordering is therefore: € € 3 F4 < 3F3 < 3F2 < 3 P2 < 3P1 < 3P0 € € < 1 G4 < 1 D2 < 1 S0 . 4 5. 1 1 Determine the possible atomic term symbols arising from a 2s 2p electron configuration. Give the degeneracy of each term symbol. Use Hund's rules to order the term symbols with respect to increasing energy. Show an energy diagram that includes splittings due to spin-orbit coupling. The spin angular momentum is calculated using s1 = from s1 − s2 to s1 + s2 in steps of 1. Thus, 1 2 1 and s2 = 2 . The total spin angular momentum S ranges 1 S= € − 12 , …, 2 € 1 2 + 12 , € € or S = 0, 1 . € The multiplicity 2S+1 is therefore 1 or 3 (singlet or triplet). € The orbital angular momentum is calculated using ℓ1 = 0 and ℓ 2 = 1 . The total orbital angular momentum L ranges from ℓ1 − ℓ 2 to ℓ1 + ℓ 2 in steps of 1. Therefore, € € L = 0€ −1, …, 0 +1, € or L=1. € 1 3 The state is therefore a P state, and the possible terms are P and P . To complete the term symbols, the total angular momentum J must be determined. The total angular € € momentum J ranges from L − S to L + S . 1 For P : L = 1 and S = 0 leads to J = 1 . € € 3 P : L = 1 and S = 1 leads to J = 0, 1, 2 . € € € € The possible term symbols (and their degeneracies) are therefore € € € € 1 3 3 Term Symbol P1 P0 P1 For Degeneracy (2J+1) € 3 1 € 3 3 € P2 5 € 5 5. continued 1 3 3 1 1 The terms for the 2s 2p electron configuration are P and P . Using Hund's rule 1, the P term is lower in 3 3 3 energy because it has a higher multiplicity. Spin-orbit coupling will split the P0 , P1 , and P2 term symbols by a small amount. A sketch of the energy level diagram is shown below. € € € 1 P € € € 1 P1 E 3 P 3 Po , 3P1 , 3P2 2s12 p1 elec-elec repulsions spin-orbit coupling 6 6. 1 1 Determine the possible atomic term symbols arising from a 3s 3d electron configuration. Give the degeneracy of each term symbol. The spin angular momentum is calculated using s1 = from s1 − s2 to s1 + s2 in steps of 1. Thus, 1 2 1 and s2 = 2 . The total spin angular momentum S ranges 1 S= € − 12 , …, 2 € 1 2 + 12 , € € or S = 0, 1 . € The multiplicity 2S+1 is therefore 1 or 3 (singlet or triplet). € The orbital angular momentum is calculated using ℓ1 = 0 and ℓ 2 = 2 . The total orbital angular momentum L ranges from ℓ1 − ℓ 2 to ℓ1 + ℓ 2 in steps of 1. Therefore, € € L = 0− €2 , …, 0 + 2, € or L = 2 . € 1 3 The state is therefore a D state, and the possible terms are D and D . € To complete the term symbols, the total angular momentum J must be determined. The total angular € € momentum J ranges from L − S to L + S . 1 For D : L = 2 and S = 0 leads to J = 2 . € € 3 D : L = 2 and S = 1 leads to J = 1, 2, 3 . € € € € The possible term symbols (and their degeneracies) are therefore € € € € 1 3 3 Term Symbol D2 D1 D2 For Degeneracy (2J+1) € 5 3 € 3 5 € D3 7 € 7 7. 1 1 Determine the possible atomic term symbols arising from a 3p 3d electron configuration. Give the degeneracy of each term symbol. The spin angular momentum is again calculated using s1 = ranges from s1 − s2 to s1 + s2 in steps of 1. Thus, 1 2 S= € € 1 2 − 12 ,€…, 1 and s2 = 2 . The total spin angular momentum S 1 2 + 12 , € or S = 0, 1 . € The multiplicity 2S+1 is therefore 1 or 3 (singlet or triplet). € The orbital angular momentum is calculated using ℓ1 = 1 and ℓ 2 = 2 . The total orbital angular momentum L ranges from ℓ1 − ℓ 2 to ℓ1 + ℓ 2 in steps of 1. Therefore, € € € L = 1− € 2 , …, 1+ 2, or L = 1, 2, 3. € 1 3 1 3 1 3 The states possible are therefore P, D, and F states, and the possible terms are P , P , D , D , F , and F . € To complete the term symbols, the total angular momentum J must be determined. The total angular € € € € € € momentum J ranges from L − S to L + S . 1 For P : L = 1 and S = 0 leads to J = 1 . € € For € € For € € For € € For € € For € € € € 3 P : L = 1 and S = 1 leads to J = 0, 1, 2 . € € 1 D : L = 2 and S = 0 leads to J = 2 . € € 3 D : L = 2 and S = 1 leads to J = 1, 2, 3 . € € 1 F : L = 3 and S = 0 leads to J = 3 . € € 3 F : L = 3 and S = 1 leads to J = 2, 3, 4 . € € € € 8 7. continued The possible term symbols (and their degeneracies) are therefore Term Symbol P1 Degeneracy (2J+1) 3 P0 1 1 3 3 P1 3 P2 5 D2 5 € 3 € 1 € 3 D1 3 € 3 D2 5 € 3 D3 7 € 1 € 3 F2 5 € 3 F3 7 € 3 F4 9 F3 7 € € € 8. Classify the following atomic transitions as allowed or not. If a transition is not allowed, indicate which selection rule is violated. a.) 3P2 → 1 D2 Not allowed. This transition corresponds to ΔS= –1, which violates the ΔS=0 selection rule. Otherwise, it corresponds to ΔL=1 and ΔJ=0, which are both OK. b.) 2P3/2 → 2 S1/2 Allowed. This transition has ΔS=0, ΔL= –1, and ΔJ= –1, which are all allowed by the selection rules. c.) 3 D2 → 3 F2 Allowed. This transition has ΔS=0, ΔL=1, and ΔJ=0, which are all allowed by the selection rules.