* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download antihypertensive drugs
Pharmaceutical industry wikipedia , lookup
Drug interaction wikipedia , lookup
Cannabinoid receptor antagonist wikipedia , lookup
NK1 receptor antagonist wikipedia , lookup
Psychopharmacology wikipedia , lookup
Neuropharmacology wikipedia , lookup
Neuropsychopharmacology wikipedia , lookup
Discovery and development of beta-blockers wikipedia , lookup
Discovery and development of angiotensin receptor blockers wikipedia , lookup
Cardiovascular Pharmacology - Antihypertensive Agents Edward JN Ishac. Ph.D. Professor, Dept. Pharmacology & Toxicology Office: Smith Bldg, Room 742 Email: [email protected] Tel: (804) 828 2127 Objectives: Demonstrate an understanding of antihypertensive agents with respect to: 1. Subcategories (drug classes) and the specific mechanisms 2. Major pharmacokinetic characteristics of each drug class 3. Primary adverse effects of each drug class 4. Unique characteristics of individual agents 5. Similarities and differences in the hemodynamic effects of the drug classes 6. Differences among populations in response to drug classes 7. Advantages or disadvantages of using combinations from different drug classes 1. Blood Pressure Regulation: Physiology Frank's formula, BP regulation: BP = CO x TPR CO = HR x SV Baroreceptor reflex: oppose changes in BP, rapid, moment-to-moment BP adjustments Renal system: Control of Na and H2O balance, responsible for long-term BP control Figure 1. Regulation of blood pressure 2. Definition of Human Hypertension (HT) A sustained elevation of systolic and/or diastolic BP above an arbitrarily defined level (systolic >139 mmHg and/or diastolic >89 mmHg) - secondary HT may be cured by surgical procedures (early diagnosis of cause) - primary (essential) HT is a lifelong disease, needs longterm control & treatment Dr. Ishac Antihypertensive Agents 3. Classification of Hypertension (HT) 3.1. Based on severity systolic (mmHg) Normal <120 Pre-hypertension 120 - 139 Stage 1 Hypertension 140 -159 Stage 2 Hypertension >160 diastolic (mmHg) and < 80 or 80 - 89 or 90 - 99 or >100 - Represents 15-20% of general population, >50% of individuals > 60 years - 45 – 60 million in US - CV mortality risk doubles with each 20/10 mm Hg BP increment 3.2. Based on pathogenesis 3.2.1. Secondary HTs (< 10%) -neurogenic HT caused by brain damage -cortisol overproduction: hypophysis or adrenal gland tumor -aldosterone overproduction: adrenal gland tumor hyperplasia -renal artery stenosis or occlusion -adrenal medullary tumor: pheochromocytoma 3.2.2. Primary (essential) HTs (> 90%) -primary cause(s) unknown, possibly multi-factorial defects - genetics - smoking - caffeine - stress - salt intake - alcohol - obesity - age - others Figure 2. 4. Consequences of Sustained Hypertension - end organ damage ie. retinopathy - failure in blood supply, renal failure (fibrinoid necrosis) - aneurysms (rupture of blood vessels) - loss of microcirculation - myocardial and/or cerebral infarction - increased risk of stroke - increased risk of heart failure 2 Dr. Ishac Antihypertensive Agents 3 5.1.Non-drug treatment (Life-style changes) - ↓salt intake (2.5g/d → 1 g/d) - ↓alcohol consumption - ↓stress factors - ↓calorie intake, weight loss - ↑physical activity - stop smoking, ↓caffeine intake 5.2. Drug treatment: 1. 3. 5. 7. 9. 11. Diuretics Calcium antagonists Alpha-antagonists Vasodilators Renin inhibitor Reduce NE release 2. 4. 6. 8. 10. 12. Renin / A-II system (ACEI, ARBs) Beta-receptor antagonists Potassium-sparing diuretics Central acting alpha2-agonists Dopamine agonist Ganglionic blockers Drugs which lower blood pressure act through three General Mechanisms: 1. Alter sympathetic activity 2. Relax vascular smooth muscle 3. Alter sodium and water balance 5.2.1. Diuretics A. Thiazides (Frontline, 1st of equals): Hydrochlorothiazide, Metolazone - early distal tubule, inhibit Na-Cl symporter to inhibit water/Na+ reabsorption - BP by depletion body of Na+ → ↓ blood volume (BV)/plasma volume (PV) - also some vasodilator action via K+-channel opening - high clinical value as antihypertensive & combination therapy, inexpensive - inexpensive, effective, retain effectiveness with elderly Mechanism of action: Initial: Chronic: body store Na+ BV/PV CO BP (TPR, reflex) CO unchanged, TPR, NE [Ca++]i TPR Figure 3. Thiazide diuretics, hemodynamic changes Dr. Ishac Antihypertensive Agents Adverse effects: - hypokalemia, hypercalcemia - ↑ uric acid retention → gout - can cause hyperglycemia/glucose intolerance; caution in diabetes - excreted unchanged; caution with decreased renal function (need >30ml/min) B. K+-Sparing: - aldosterone antagonists: Spironolactone, Eplerenone - epithelial sodium channel blockers: Amiloride, Triamterene - used as adjunct therapy (usually with thiazide & loop), least potent - act at late distal & collecting tube, can cause hyperkalemia - used also in heart failure C. Loop Diuretics: Not used in hypertension pharmacotherapy Figure 4: Sites of action of diuretic agents. 4 Dr. Ishac Antihypertensive Agents 5 5.2.2. Renin Angiotensin-Aldosterone System: A. Converting Enzyme Inhibitors (ACEI) Captopril, Lisinopril, Enalapril, Benazepril, Fosinopril [-pril] - frontline class; preferred class with diabetes - inhibition of ACE to decrease production of angiotensin II from angiotensin I - Angiotensin II is a potent vasoconstrictor peptide, ↑ aldosterone production Figure 5A. Renin Angiotensin Aldosterone System Figure 5B. Actions of Angiotensin-Converting Enzyme (ACE) Inhibitors - decrease activity of sympathetic NS - TPR, CO unchanged, HR unchanged - no reflex HR, probably due to resetting () of baroreceptor reflex sensitivity - aldosterone production Na/water retention - bradykinin level (inhibit metabolism) - improves intrarenal hemodynamics - less effective in elderly and Afro-Americans Dr. Ishac Antihypertensive Agents Adverse effects: - severe hypotension in hypovolemic patients - angioedema, hyperkalemia - dry cough (associated with bradykinin) - glossitis, oral ulceration, rash - altered sense of taste (loss of zinc) - contraindicated in pregnancy (tetrogenic) - contraindicated in renal artery stenosis - drug interaction with K-sparing diuretics (K+), NSAIDs ( effect) B. Angiotensin II Type 1 Receptor Blockers (ARBs): Losartan, Valsartan, Irbesartan [-sartan] - competitive antagonists of Angiotensin II Type I receptors - Type I receptors mediate: aldosterone, ADH, TPR, sympathetic NS - Type II receptors mediate: vasodilation (TPR), NO - use increasing, no generic, used if cannot tolerate ACEI - actions similar to ACEI but not associated with dry cough (no bradykinin) - less likely to cause angioedema, glossitis, oral ulceration, rash - also contraindicated in pregnancy and renal a. stenosis - increasing use, most likely will overtake ACEIs with generic availability C. Renin Inhibitor: Aliskiren - newest agent, introduced 2005, expensive - direct renin inhibitor → production of angiotensin I - actions similar to ACEI but not associated with dry cough (no bradykinin) - less likely to cause angioedema, glossitis, oral ulceration, rash - adverse effects and contraindications similar to ACEIs/ARBs - used if cannot tolerate ACEIs or ARBs - poor bioavailability < 5%, may [furosemide] (MOA unknown) 5.2.3. Calcium Channel Blockers Non-dihydropyridines (non-DHPs): Verapamil, Diltiazem, Bepridil Dihydropyridines (DHPs): Nifedipine, Amlodipine, Nicardipine, Felodipine [-dipine] - important agents, frontline class, oral and generally well absorbed - bind to L-type calcium channels in cardiac and vascular smooth muscle - inhibition of calcium influx into cardiac and arterial smooth muscle cells - only minimal effects on venous capacitance vessels. - dilate arterioles TPR BP (less verapamil, more nifedipine) - negative inotropic action on heart (more verapamil, less nifedipine) - T½: most 2-5 hrs, bepridil 42 hrs, amlodipine 30-50- hrs Nifedipine: Verapamil: Diltiazem: - mainly arteriole vasodilation, little direct cardiac effect - may cause reflex tachycardia, flushing, peripheral edema - significant cardiac depression, constipation - caution in digitalized patients ( digoxin levels) - actions on cardiac & vascular beds 6 Dr. Ishac Antihypertensive Agents Cardiovascular & renal actions: Diltiazem Heart rate Myocardial contractility Nodal conduction Peripheral vasodilation Renal blood flow Verapamil 7 Nifedipine (DHPs) (reflex) or ↑ (reflex) ↑ (reflex) Adverse effects: - constipation (more likely with non-DHPs) - non-DHPs: cardiac depression, bradycardia, AV block - non-DHPs are contraindicated with beta-blockers - mostly DHPs: hypotension, reflex tachycardia, flushing, headache, edema - hypotension (more likely with DHPs) - can cause gingival hyperplasia (more likely with nifedipine, 10%) - non-DHPs contraindicated in CHF, DHPs not recommended - CYP3A4 inhibitors: grapefruit, verapamil, diltiazem - CYP3A4 substrates: amlodipine, verapamil Figure 6. Calcium blockers and nitrates Vasodilators: A. Ca channel blockers: Inhibit movement of Ca through L-type channels (ie. Verapamil) B. Open K-channels: Minoxidil (Rogaine), Diazoxide (acute HT) C. Direct vasodilator: mainly arterioles, Hydralazine, may inhibit calcium release D. Coupled to NO/cGMP: dilate veins also, sodium nitroprusside, nitroglycerin, nitrates E. Dopamine agonist: Fenoldopam (Dopamine-1A subtype) for acute hypertension F. Alpha-antagonists: Prazosin (alpha1-) Dr. Ishac Antihypertensive Agents 5.2.4. Beta-Adrenoceptor Blocking Agents: [-olol], -?lol – unique, A-M – β1 - Frontline class, high clinical value as antihypertensive agents - delayed hypotensive action - actions diminished in elderly, Afro-Americans, smokers - Multiple possible mechanisms of action: i. CNS effect to decrease sympathetic NS tone ii. inhibition of renin secretion: beta1-receptors mediate renin release iii. block cardiac beta1-receptors: HR CO BP Features of beta-adrenoceptor antagonists - Selective vs non-selective ie. atenolol (β1-) vs propranolol (no) - Partial agonist activity (ISA) ie. pindolol (yes) vs propranolol (no) - Membrane stabilizing action (LA-action) ie. metoprolol (yes) vs atenolol (no) - Lipid solubility (CNS availability): atenolol (low), propranolol (high) 8 Dr. Ishac Antihypertensive Agents 9 Labetalol, Carvedilol - mixed alpha and beta-receptor blockers - uses: hypertension (acute & chronic), CHF Carvedilol) - beta/alpha = 3:1 (better beta-blockers) - HR generally unchanged, CO unchanged, TPR BP Propranolol: - non-selective -receptor blocker, - no partial agonist action (no ISA), membrane stabilizing action Figure 7. Propranolol hemodynamic changes Adverse effects: - effects enhanced in elderly - myocardial reserve (blockade of cardiac 1-ARs) - fatigue, dizziness - asthma (blockade of bronchial beta2-ARs) - peripheral vascular insufficiency - diabetes (blockade of hepatic beta2-ARs) - CNS: nightmares, mental depression, insomnia - withdrawal syndrome (supersensitivity, rebound HT) - may worsen Raynand’s syndrome 5.2.5 Alpha-Adrenoceptor Antagonists Not frontline agents in chronic hypertension. Option for acute hypertensive crisis. Used for unique circumstances (ie. pheochromocytoma, benign prostrate hypertrophy). Phenoxybenzamine - irreversible, non-competitive 1-receptor blocker (x5) - reflex tachycardia effect, postural hypotension - therapeutic value in pheochromocytoma treatment (acute & chronic) Prazosin (most useful class, others Terazosin, Doxazosin) [-azosin] - selective, competitive alpha1-receptor blocker (x1000) - no reflex tachycardia (maintain functional alpha2-receptors) - used to treat benign prostrate hypertrophy, primary HT Phentolamine (non-selective -receptor blocker) - reflex tachycardia effect, not used for primary hypertension Dr. Ishac Antihypertensive Agents Adverse effects: 10 - salt and fluid retention - postural hypotension (all agents) - impotence (phenoxybenzamine) 5.2.6. Vasodilators - all vasodilators relax arteriolar smooth muscle, some also relax veins - various MOA: NO/cGMP, direct relaxation or opening of K-channel - relax smooth muscle of arterioles TPR reflex HR - general adverse effects of vasodilators include: headache, nausea, palpitations, sweating, flushing, fluid retention - good clinical value (in combinations and hypertensive emergencies) i. Hydralazine - direct muscle relaxation (probably involve ↓ Ca++ release) - dilate arterioles but not veins - TPR reflex tachycardia - bioavailability: 25% (slow and rapid acetylators) Adverse effects: - reflex tachycardia, HR can provoke angina - headache, nausea, palpitations - sweating, flushing, fluid retention - lupus reaction (mainly in slow acetylators) ii. Minoxidil (Rogaine) - opens K+-channels in smooth muscle membranes - stabilization of membrane at its resting potential, contraction less likely. - dilates arterioles but not veins Adverse effects: - reflex sympathetic stimulation (use with -blocker) - fluid retention (usually combo-therapy with diuretic) - hypertrichosis (OTC, topical application as Rogaine) iii. Sodium Nitroprusside - used for acute emergency hypertension and congestive heart failure - used i.v., (cyanide toxicity via oral administration) - activation of guanylyl cyclase (direct and/or via release of NO cGMP) - dilates both arterial ( TPR) and venous vessels - venous return to the heart is decreased, reflex tachycardia Adverse effects: - cyanide liberation cyanide toxicity - reflex HR (arrhytmias), severe hypotension - methhemoglobinemia, metabolic acidosis iv. Diazoxide - used for acute hypertensive crisis - opens K+-channels - stabilizes membrane potential - dilates arteriolar vessels TPR reflex HR CO - inhibits insulin release (via opening K+-channels on beta cell membrane) - similar structure as thiazide diuretics but no diuretic effect Dr. Ishac Antihypertensive Agents 11 v. Fenoldopam - peripheral dopamine-1A agonist TPR - used for acute hypertensive crisis vi. Vasodilators used to treat pulmonary arterial hypertension a. Epoprostenol (Flolan) - prostacyclin b. Treprostenol (Remodulin) – prostacyclin analogue c. Bosentan (Tracleer) – competitive antagonist of endothelin-1 d. Sildenafil (Revatio) – inhibit cGMP specific phosphodiesterase type 5 (PDE5) vii. Reflex compensatory responses Mediated by baroreceptors and the sympathetic NS and Renin, Angiotensin, Aldosterone (RAA) systems, these responses include cardiac stimulation and counteract the hypotensive effects of vasodilation. Use in combination with sympatholytics blocks the increases in HR, contractility and renin levels. Diuretics are useful in preventing fluid retention and plasma volume expansion. See figure below. Figure 8. Consequences of hemodynamic changes to vasodilators 5.2.7. Centrally acting sympatholytic agents Clonidine, -Methyldopa (prodrug, converted to -methyl-NE) - good clinical value as antihypertensives, useful but not frontline - no metabolic side effects, do not interfere with exercise - Agonist central 2-receptors sympathetic outflow from Vasomotor center - -Methyldopa is preferred agent for hypertension during pregnancy - clonidine also used in opiate and nicotine withdrawal treatment (↓severity) Adverse effects: - dry mouth, drowsiness, lightheadedness, dizziness, impotence - abrupt withdrawal effect (rebound HT, esp. clonidine) Dr. Ishac Antihypertensive Agents 5.2.8. Ganglion-Blocking Agents - Earliest effective class used to treat hypertension - competitively block ganglionic nicotinic receptors (SNS, PNS) - rarely used, clinical value as antihypertensive drug is very low. a. Trimethaphan - i.v. injection, rapid effect, short half life (precise titration) - hypertensive crisis, controlled hypotension, usually during surgery b. Mecamylamine: orally active Serious adverse effects (both agents): sympathoplegia: - excessive orthostatic hypotension - sexual dysfunction parasympathoplegia: - constipation, urinary retention - glaucoma, blurred vision, dry mouth 5.2.8. Adrenergic Neuron-Blocking Agents - Antihypertensive clinical value is low, effective but agents of last resort Guanethidine, (Bretylium used as antidysrhythmic, saved ET) - inhibits release of NE from nerve terminals → gradual depletion of NE stores - neuronal uptake (uptake 1) is essential for action (TCAs or cocaine ↓ effect) Adverse effects: - marked postural hypotension, - diarrhea, impaired ejaculation Reserpine (significant adverse effects) - Antihypertensive clinical value is low, effective but agent of last resort - inhibit uptake of NE into storage vesicle (also DA, 5-HT) - leads to depletion of transmitter stores (peripheral & CNS action) Adverse effects: - severe sedation, mental depression, Parkinsonism - increases gastric acid secretion Figure 9. 12 Dr. Ishac Antihypertensive Agents 13 6. Treatment of Hypertension 6.1. General considerations - Age – Beta-blocker and ACEI/ARB efficacy may decrease with age (>70 yrs) - Race - Beta-blockers and ACEI/ARBs less effective in blacks than whites - Renin – Patients with ↑renin may respond better with beta-blocker, ACEI/ARBs - Smokers – Beta-blockers less effective - Diabetes – ACEI/ARBs improve renal function - Chronic NSAIDs – ↓response of some agents: ie. diuretics, ACEI, beta-blockers - Compliance – important, treat patient not just BP, quality of life - Lifestyle - important, smoking, overweight, exercise, alcohol intake 6.2. Hypertension and Pregnancy: - HT in pregnancy is among the leading cause of maternal mortality - about 1% of pregnancies are complicated by chronic HT, 5% by gestational HT - important: ACEI/ARBs are contraindicated in pregnancy - agents recommended for use in pregnancy include: a. Alpha-methyl dopa b. Nifedipine c. Beta-blockers (not atenolol, CI) d. Labetalol e. Prazosin f. Hydralazine 6.3. Pharmacological Basis for Combination Pharmacotherapy: Combinations of drugs with diuretic, beta-blocker, ACEI/ARB or CCB are rational: a. Different mechanisms of action produce additive effect with ↓side effect b. Alpha receptor mediated functions are not affected (avoid postural HT) c. Beta-blockers counter the reflex cardiac stimulation by vasodilators d. Thiazides counter the fluid retention by sympatholytics and vasodilators e. ACEIs/ARBs/K-sparing agents counter hypokalemia by thiazides f. Fixed combinations – availability improves effect, cost & compliance 6.4. Fixed Combination Availability: a. Thiazide diuretic and Beta-blocker b. Thiazide diuretic and ACE inhibitor c. Thiazide diuretic and Ca-blocker d. Thiazide diuretic and Angiotensin II receptor blocker e. Thiazide diuretic and K-sparing diuretic f. ACE inhibitor and Ca-blocker g. Thiazide diuretic and Sympathoyltic (other than beta-blocker) - Thiazide and Alpha-methyl dopa - Thiazide and Clonidine - Thiazide and Prazosin - Thiazide and Guanethidine - Thiazide and Reserpine 6.5. Front-line agents include: 1. Thiazides (1st) 2. Ca-Blockers 2. ACEI/ARBs 4. Beta-blockers Dr. Ishac Antihypertensive Agents 14 6.6. Treatment strategy: Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7) Figure 10. Strategy of hypertension pharmacotherapy 6.7. Hypertension and Compelling Indication for Use: High Risk Condition Heart failure Thiazide X Post MI CAD Risk X Diabetes X Kidney Disease Stroke Prevention X B-blocker X Recommended Drugs ACEI ARB CCB X X X X X X K-sparing X X X X X X X X X JNC VII: 2003. X: Indicates compelling indication for use; ARB: Angiotensin II Type 1 receptor blocker, CCB: Calcium channel blocker, CAD: Coronary artery disease Dr. Ishac Antihypertensive Agents 15 7. Hypertension Pharmacotherapy Summary: Figure 11. NOTE: Beta-blockers used in the treatment of congestive heart failure. Contraindication include: bronchospasm, significant bradycardia, decompensated heart failure and depression. 8. References Basic and Clinical Pharmacology, B.G. Katzung, 11th ed., 2009, pp. 167-189. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, Hardman and Limbird, 11th ed., 2005, pp. 789-932.