Download Cell Membrane Quiz 2013

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Thylakoid wikipedia , lookup

Cell encapsulation wikipedia , lookup

Membrane potential wikipedia , lookup

Mitosis wikipedia , lookup

Organ-on-a-chip wikipedia , lookup

Cytosol wikipedia , lookup

Cytokinesis wikipedia , lookup

Signal transduction wikipedia , lookup

Cell membrane wikipedia , lookup

Endomembrane system wikipedia , lookup

List of types of proteins wikipedia , lookup

Transcript
☰





Search
Explore
Log in
Create new account
Upload
×
Cell Membrane 2013
Multiple Choice
Identify the choice that best completes the statement or answers the question.
____
1. Which means of particle transport requires input of energy from the cell?
a. diffusion
c. facilitated diffusion
b. osmosis
d. active transport
____
2. The cell theory applies to
a. bacteria.
b. plants and animals.
c. multicellular organisms.
d. all of the above
3. Prokaryotes lack
a. cytoplasm.
b. a cell membrane.
c. a nucleus.
d. genetic material.
____
____
4. Which of the following organisms are prokaryotes?
a. plants
c. bacteria
b. animals
d. all of the above
____
5. Which of the following is a function of the cytoskeleton?
a. helps a cell keep its shape
c. surrounds the cell
b. contains DNA
d. helps make proteins
____
6. You will NOT find a cell wall in which of these kinds of organisms?
a. plants
c. fungi
b. animals
d. all of the above
____
7. Which of the following structures serves as the cell’s boundary from its
environment?
a. mitochondrion
c. chloroplast
b. cell membrane
d. channel proteins
____
8. Which of the following is a function of the cell membrane?
a. breaks down lipids, carbohydrates, and proteins from foods
b. stores water, salt, proteins, and carbohydrates
c. keeps the cell wall in place
d. regulates which materials enter and leave the cell
____
9. The cell membrane contains channels and pumps that help move materials from
one side to the other. What
are these channels and pumps made of?
a. carbohydrates
c. bilipids
b. lipids
d. proteins
____ 10. Diffusion is the movement of molecules from
a. an area of low concentration to an area of high concentration.
b. an area of high concentration to an area of low concentration.
c. an area of equilibrium to an area of high concentration.
d. all of the above
____ 11. Diffusion occurs because
a. molecules constantly move and collide with each other.
b. the concentration of a solution is never the same throughout a solution.
c. the concentration of a solution is always the same throughout a solution.
d. molecules never move or collide with each other.
____ 12. When the concentration of molecules on both sides of a membrane is the
same, the molecules will
a. move across the membrane to the outside of the cell.
b. stop moving across the membrane.
c. move across the membrane in both directions.
d. move across the membrane to the inside of the cell.
____ 13. The diffusion of water across a selectively permeable membrane is
called
a. osmotic pressure.
c. facilitated diffusion.
b. osmosis.
d. active transport.
____ 14. An animal cell that is surrounded by fresh water will burst because the
osmotic pressure causes
a. water to move into the cell.
c. solutes to move into the cell.
b. water to move out of the cell.
d. solutes to move out of the cell.
USING SCIENCE SKILLS
A student put together the experimental setup shown below. The selectively
permeable membrane is
permeable to both types of solute molecules shown.
Figure 7–4
15. Interpreting Graphics Describe the experimental setup shown in Figure 7–4.
Do you expect the distribution
of the solutes on each side of the membrane to change over time?
16. Predicting Describe the movement of the C molecules on side A of the
apparatus shown in Figure 7–4. What
will happen to these molecules over time?
17. Predicting Look at Figure 7–4. Describe the movement of the D molecules on
side A. What will happen to
these molecules over time?
18. Predicting What will the apparatus shown in Figure 7–4 look like when
equilibrium is reached?
19. Predicting Once equilibrium is reached in the apparatus shown in Figure 7–4,
will the molecules continue to
move? Explain your answer.
USING SCIENCE SKILLS
The experimental setup below shows an osmometer. An osmometer is a device used
to measure the amount of
osmotic pressure exerted by a liquid passing through a semipermeable membrane.
The graph shows one lab
group’s results compared with the results of the rest of the class combined.
Line A represents the results of the
single lab group. Line B represents the data of the rest of the class.
Figure 7–6
20. Comparing and Contrasting Look at the graph in Figure 7–6. Compare the lab
results of the single lab
group with those collected by the rest of the class.
21. Analyzing Data Which results in the graph in Figure 7–6 are more likely to
be accurate, those represented by
line A or by line B? Why?
22. Evaluating and Revising What could account for the difference in lines A and
B in the graph in Figure 7–6?
23. Predicting Look at the graph in Figure 7–6. How would the results differ if
a sucrose solution with twice the
concentration of the one used to collect the results represented by line A were
used?
24. Calculating How might you use the graph in Figure 7–6 to calculate the rate
of osmosis observed? What
units would you use to report the rate?
Cell Membrane 2013
Answer Section
MULTIPLE CHOICE
1. ANS:
OBJ:
2. ANS:
OBJ:
3. ANS:
OBJ:
4. ANS:
OBJ:
5. ANS:
OBJ:
6. ANS:
OBJ:
7. ANS:
OBJ:
8. ANS:
OBJ:
9. ANS:
OBJ:
10. ANS:
OBJ:
11. ANS:
OBJ:
12. ANS:
OBJ:
13. ANS:
OBJ:
14. ANS:
OBJ:
D
7.3.3
D
7.1.1
C
7.1.3
C
7.1.3
A
7.2.3
B
7.3.1
B
7.3.1
D
7.3.1
D
7.3.1
B
7.3.2
A
7.3.2
C
7.3.2
B
7.3.3
A
7.3.3
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
PTS:
STA:
1
DIF: E
REF:
GOAL 2.03 | GOAL 2.01 | GOAL 1.02
1
DIF: E
REF:
GOAL 2.02
1
DIF: B
REF:
GOAL 2.02
1
DIF: E
REF:
GOAL 2.02
1
DIF: B
REF:
GOAL 2.02
1
DIF: E
REF:
GOAL 4.01
1
DIF: B
REF:
GOAL 2.02
1
DIF: A
REF:
GOAL 2.02
1
DIF: E
REF:
GOAL 2.02
1
DIF: B
REF:
GOAL 2.03
1
DIF: A
REF:
GOAL 2.03
1
DIF: E
REF:
GOAL 2.03
1
DIF: B
REF:
GOAL 2.03
1
DIF: A
REF:
GOAL 2.03
p. 188
p. 170
p. 173
p. 173
p. 181
p. 183
p. 182
| GOAL 2.03
| GOAL 2.03
| GOAL 2.02 | GOAL 2.03
| GOAL 2.01
| GOAL 2.01
| GOAL 2.01
| GOAL 2.02 | GOAL 2.01
| GOAL 2.02 | GOAL 2.01
| GOAL 2.02 | GOAL 2.01
p. 182
p. 182
p. 184
p. 184
p. 184
p. 185
p. 186
OTHER
15. ANS:
The experimental setup shows two solutions with different concentrations of two
different solutes separated
by a selectively permeable membrane. Over time, the solutes should reach
equilibrium.
PTS: 1
DIF: A
REF: p. 184 | p. 185
OBJ: 7.3.2
STA: GOAL 2.03 | GOAL 2.02 | GOAL 2.01
16. ANS:
Some of the C molecules will move to the B side of the container.
PTS: 1
STA: GOAL 2.03
DIF: A
REF: p. 185
OBJ: 7.3.2
17. ANS:
Some of the D molecules will move from side A to side B. The net movement of D
molecules will be from
side B to side A.
PTS: 1
DIF: A
REF: p. 184 | p. 185
OBJ: 7.3.2
STA: GOAL 2.03 | GOAL 2.02 | GOAL 2.01
18. ANS:
At equilibrium, the concentrations of both C and D molecules will be equal on
either side of the selectively
permeable membrane.
PTS: 1
DIF: A
REF: p. 184
OBJ: 7.3.2
STA: GOAL 2.03 | GOAL 2.02 | GOAL 2.01
19. ANS:
Yes, both kinds of molecules will continue to move across the membrane; however,
there will be no net
movement of either molecule.
PTS: 1
DIF: A
REF: p. 184
OBJ: 7.3.2
STA: GOAL 2.03 | GOAL 2.02 | GOAL 2.01
20. ANS:
Line A shows that the single group’s results are quite different from the
results of the rest of the class. Over a
half-hour period, the lab group found that the solution traveled 25 mm, whereas
the rest of the class found a
distance of only 12 mm over the same period of time.
PTS: 1
DIF: E
REF: p. 185 | p. 186
OBJ: 7.3.3
STA: GOAL 2.03
21. ANS:
The rest of the class’s results (line B) are more likely to be accurate because
they represent a larger sample
size.
PTS: 1
DIF: E
REF: p. 185 | p. 186
OBJ: 7.3.3
STA: GOAL 2.03
22. ANS:
The lab group (line A) might have used a more concentrated solution of sucrose
or a membrane with a
different permeability.
PTS: 1
DIF: E
REF: p. 185 | p. 186
OBJ: 7.3.3
STA: GOAL 2.03
23. ANS:
The more concentrated the solution the longer distance the solution will travel
over the same period of time.
Thus, a more concentrated solution would produce a longer distance.
PTS: 1
DIF: E
REF: p. 185 | p. 186
OBJ: 7.3.3
STA: GOAL 2.03
24. ANS:
The rate of osmosis could be calculated by dividing the distance traveled by
time. The units would be
mm/min.
PTS: 1
OBJ: 7.3.3
DIF: E
STA: GOAL 2.03
REF: p. 185 | p. 186
Download
1. Science
2. Biology
Cell Membrane Quiz 2013.doc
Name
Biology midterm Exam review 102011
Who was one of the first people to identify and see cork cells?
Unit 5 – Cells – Review/Study Guide
7 Cell Structure and Function
File
Finite Math 8.1 to 8.3 Review Sheet Name: 1. A Markov chain has
Competency 1 – Inquiry 1. What type of graph is best for showing a
2-3 Moving Cellular Material
HW Packet #2 Cells
Chapter 7 Cells - Southgate Schools
Soil Water
Biology Exercise—Transport across membrane
Lab 3: Membrane Transport
Lab 3: Membrane Transport
Supplementary Material Supplementary Fig S1. Physiological data
Diffusion of solvent..
MEMBRANE LIPIDS
studylib © 2017
DMCA Report