* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Resumen Science I Trimestre II Parcial Definitions: Element: pure
Depletion force wikipedia , lookup
Thermomechanical analysis wikipedia , lookup
Spinodal decomposition wikipedia , lookup
Distillation wikipedia , lookup
IUPAC nomenclature of inorganic chemistry 2005 wikipedia , lookup
Stöber process wikipedia , lookup
Size-exclusion chromatography wikipedia , lookup
Thermal spraying wikipedia , lookup
Photopolymer wikipedia , lookup
History of molecular theory wikipedia , lookup
Safety data sheet wikipedia , lookup
Chemical thermodynamics wikipedia , lookup
Gas chromatography wikipedia , lookup
Nanoparticle wikipedia , lookup
Elementary particle wikipedia , lookup
Colloidal crystal wikipedia , lookup
History of chemistry wikipedia , lookup
Liquid–liquid extraction wikipedia , lookup
Molecular dynamics wikipedia , lookup
Freeze-casting wikipedia , lookup
Chemistry: A Volatile History wikipedia , lookup
Registration, Evaluation, Authorisation and Restriction of Chemicals wikipedia , lookup
Crystallization wikipedia , lookup
Particle-size distribution wikipedia , lookup
Vapor–liquid equilibrium wikipedia , lookup
State of matter wikipedia , lookup
Sol–gel process wikipedia , lookup
Resumen Science I Trimestre II Parcial 1. Definitions: Element: pure substance that can’t be separated into simpler substances by chemical or physical methods. Unique characteristic: can’t be broken down into smaller particles or substances. Atom: basic particles of elements. Elements are made from atoms; atoms aren’t made of elements. Chemical bond: force of attraction between 2 atoms that holds them together. Ex: H2O Molecule: particle of a compound; formed when atoms of 2 or more elements join together. Compound: pure substances composed of 2 or more elements that are chemically combined; elements combine reaction with one another. Chemical Formula: is the fundamental unit of an element. The symbols for the elements are written together; numeral subscripts indicate the ratio in which the atoms are combine. The subscript 1 is understood and omitted. Ex. NH3, NaCI Ratio: is the amount of elements in a compound. Element join in a specific ratio (amount of the element), according to their mass to form a compound. Ex. 16g Mixture: combination of 2 or more substances that are not chemically combined. (Physical change: so each substance has the same chemical makeup that it has before forms). Compound of mixtures don’t have to mix in definite ratios. Ex: granite (mix different materials) different ratios of minerals give granite colors but is always called granite. Heterogeneous mixture: different components can be seen as individual substances, particles visible. Ex. Pizza, oil and water, gallo pinto. Homogeneous mixtures: same composition through any one region of a mixture has the same ratio of a substance as any other region, compounds can’t be seen as individual identifiable entities mixed as much finer level, not readily distinguish. Ex. Water with salt Solution: appears to be a single substance. Process in which particles of substance separate and spread evenly through a mixture is known as dissolving. Suspension: is a mixture in which particles of a material are dispersed throughout a liquid or a gas but are large enough that they settle out. Colloids: Is a mixture in which the particles are spread throughout but are not large enough to settle out 2. Differentiate between a homogeneous and a heterogeneous mixture and provide examples. Homogenous Mixtures Have the same composition throughout. Heterogeneous Mixtures Different components can be seen as individual substances. Any region of the mixture has the same ratio of We can almost separate the components with our substance as any other region eyes The components can´t be seen as individual The particles are visible indentifiable entities 3. Differentiate between colloids, suspensions, solutions. Solutions Uniformly disersed Single phase Small paricles Can't scatter light Suspensions More or less dispersed More phases Large particles that settle out Scatter or block light Colloids Intermediate dispersed More phases Intermediate particles Scatter light Examples: Solutions: soft drinks, gasoline, tap water, steel, and alloys. Suspensions: blood Colloids: fog, ketchup, milk 4. Differentiate between a pure substance and a mixture. Pure substances: material that consist of only a single element or a single compound. Pure (relative term): nothing is 100% pure, maybe 99.999% without a lot of imparities. Classification of elements: Physical properties: -Hardness -Melting point -Density Chemical properties: -Reactivity -Flammability Classification of compounds: Physical properties: -Melting point -Boiling point - Density -Color Chemical properties: -Reaction with other elements -Reaction to heat -Reaction to light -Flammability Compound Table Salt (NaCl) Water (H2O) Sugar (C6H12O6) Carbon Dioxide (CO2) Baking Soda Element in the compound Sodium + Chlorine Water + Oxygen Hydrogen + Carbon + Oxygen Carbon + Oxygen Sodium + Hydrogen + Carbon + Oxygen 3 major categories Properties appearance conductivity (heat electric) malleable (sheets) ductile (wires) Brittle metal non metal shiny dull good poor metaloids some are shiny some do yes no yes no No Yes some are some what malleable some are some what ductible Some are Metals: Lead, Tin, Copper, except of Mercury it is liquid Non metals: Iodine, Sulfur, Neon Metaloids: Boron, Silicon, Antimony Impure substances (mixtures): made up of element, compounds or both; combination of 2 or more substances that aren’t chemically combined. Properties of mixtures: • No Chemical Changes in a Mixture No chemical changes happen when a mixture is made. So, each substance has the same chemical makeup it had before the mixture was formed. • Making a mixture is a physical change •Separating Mixtures Through Physical Methods Mixtures can be separated by using physical changes. Physical changes do not change the identities of the substances. •Some methods could be distillation, evaporation, filtration, dissolve, use of magnets, centrifuging,and chromatography • The Ratio of Components in a Mixture The components of a mixture do not need to be mixed in a definite ratio. • For example, granite is a mixture of different minerals. Different ratios of the minerals give granite different colors, but the mixture is always called granite. Mixtures Made of elements, compunds or both No change in original properties of the components Compunds made of elements Heat or electricity not required for Separating the components Heat or electricity required for Separating the components Made using any ratio of the components Made using a fixed ratio of Components change in original properties of the components 5. Describe the components of a solution and the relation between them (solute, solvent, concentration). Solution: is a mixture that appears to be a single substance. Solute: the substance that is dissolved. Solvent: is the substance in which the solute is dissolved. Concentration: is the amount of solute in a solution. A solution con be concentrated or dilute , because of the amount of solute in a solution Solubility: is the ability of a solute to dissolve in a solvent at a certain temperature. Depends on the attractions of solute particles for one another and attractions of solvent particles for one another. Dissolving Gases in Liquids Gases become less soluble in liquids as the temperature is raised. Dissolving Solids Faster in Liquids Three ways to make a solute dissolve faster are mixing the solution, heating the solution, and crushing the solute into smaller particles. Unsaturate solution: A solution that has not reached the limit of solute that will dissolve Saturated solution: A solution in which no more solute can be dissolved Supersaturated solution: A solution that has more than the limit of a solute that can be dissolved. 6. Describe the components of a solution and the relation between them (solute, solvent, concentration). Separating Mixtures Through Physical Methods Mixtures can be separated by using physical changes. Physical changes do not change the identities of the substances. Filtering: Pour a mixture (solid and liquid), through a filter paper. Depends on the solubility. Crystallization: Slow formation of a solid from a warm solution that is cooled. Depends on the solubility. Distillation: Boil off and condense the more volatile component in a liquid mixture. Depends on volatility. . Decanting: Used to separate a liquid from an insoluble solid. The solid stays in the bottom. Chromatography: Involves the separation of different dissolved substances as they travel through a material Centrifugation: Involves the use of the centrifugal force. More dense components migrate away. Solid particles remain on the bottom. Evaporation: Separation of a liquid and a soluble solid. Magnetism: A magnetically susceptible material is extracted from a mixture using a magnetic force. 7. Use math skills to determine the ratio of various compounds. Ratio of components: Steps: divide the least number into the greatest number Ex 18gH2O → 2g H2 + 16g O2 _ 2gH2__ = _1_ 16g O2 8 Mass ratio: 1:8 if the ratio is different, is a different compound Amount of atoms in the molecule : H3PO4 = 3+1+4 = 8 Amount of molecules: 3 molecules of CO how many molecules of O2 does it contain? = 3·2= 6 molecules 8. Explain how changes in matter are related to changes in energy. Change of state: is the change of a substance from one physical form to another. The particles of a substance move differently depending on the state of the substance. The particles also have different amounts of energy when the substance is in different states When most substances lose or gain energy, one of two things happens to the substance: its temperature changes or its state changes. But the temperature of a substance does not change until a change of state is complete. 9. Become familiar with the following terms: energy, temperature, endothermic change, exothermic change, condensation, sublimation, evaporation, melting, freezing, boiling. Energy: power which may be translated into motion. Temperature: A measure of intensity of heat. Endothermic change: energy is gained by the substances as it changes state. Absorption of heat. Exothermic change: energy is removed from the substance as it changes state. Give off heat. Condensation: the change of phase from gas to liquid , energy must be removed for condensation to occur. Removing energy slows the movement of gas particles which allows them to clump together. Condensation point: is the temperature at which the gas becomes a liquid. Sublimation: is the change of sate from solid to gas, For sublimation to occur, the attractions between the particles must be completely overcome. So, the substance must gain energy during sublimation. Evaporation: the change of state from a liquid to a gas. Evaporation can occur at the surface of a liquid that is below its boiling point. It is a cooling process because in the process the particles with more kinetic energy are the ones that leave the liquid first, and they are taking the energy away. Melting: the change of state from a solid to a liquid. For a solid to melt, particles must overcome their attractions to each other. We have to add energy Melting point: is the temperature at which a solid changes to a liquid Freezing: the change of state form liquid to a solid. When a liquid is at its freezing point, removing energy will cause the particles to begin locking into place. Freezing point: is the temperature at which a liquid changes to a solid Boiling: is the change of a liquid to a gas throughout the liquid. Boiling point: is the temperature at which a liquid boils. 10. Memorize the different elements and their symbols in English and Spanish.