Download TEXT 8 - Камышинский технологический институт

Document related concepts

Electric power system wikipedia , lookup

Wireless power transfer wikipedia , lookup

War of the currents wikipedia , lookup

Electrical ballast wikipedia , lookup

Commutator (electric) wikipedia , lookup

Islanding wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Mercury-arc valve wikipedia , lookup

Current source wikipedia , lookup

Rectifier wikipedia , lookup

Brushed DC electric motor wikipedia , lookup

Coilgun wikipedia , lookup

Skin effect wikipedia , lookup

Opto-isolator wikipedia , lookup

Stepper motor wikipedia , lookup

Ground (electricity) wikipedia , lookup

Buck converter wikipedia , lookup

Transformer wikipedia , lookup

Voltage optimisation wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Surge protector wikipedia , lookup

Three-phase electric power wikipedia , lookup

Protective relay wikipedia , lookup

Electrical substation wikipedia , lookup

History of electromagnetic theory wikipedia , lookup

Induction motor wikipedia , lookup

Resonant inductive coupling wikipedia , lookup

Power engineering wikipedia , lookup

Transformer types wikipedia , lookup

Electrification wikipedia , lookup

Ohm's law wikipedia , lookup

Stray voltage wikipedia , lookup

Rectiverter wikipedia , lookup

Mains electricity wikipedia , lookup

History of electric power transmission wikipedia , lookup

Earthing system wikipedia , lookup

Electric machine wikipedia , lookup

Alternating current wikipedia , lookup

Transcript
И. В. Алещанова, Н. А. Фролова
ПОСОБИЕ ПО ТЕХНИЧЕСКОМУ
ПЕРЕВОДУ ДЛЯ НАПРАВЛЕНИЯ
«ЭЛЕКТРОЭНЕРГЕТИКА»
(НА МАТЕРИАЛЕ АНГЛИЙСКОГО
ЯЗЫКА)
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)
ГОУ ВПО «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
И. В. Алещанова, Н. А. Фролова
ПОСОБИЕ ПО ТЕХНИЧЕСКОМУ ПЕРЕВОДУ ДЛЯ
НАПРАВЛЕНИЯ «ЭЛЕКТРОЭНЕРГЕТИКА»
(НА МАТЕРИАЛЕ АНГЛИЙСКОГО ЯЗЫКА)
Учебное пособие
Рекомендовано
УМО
РАЕ
по
классическому
университетскому и техническому образованию в качестве
учебного пособия для студентов высших учебных заведений,
обучающихся по специальности 551700 «Электроэнергетика»
Волгоград
2011
1
ББК 81.2 Англ. – 923
А 49
Рецензенты: к. п. н. Н. В. Пояркова; коллектив учебнометодического совета Камышинского филиала Современной
гуманитарной академии
Алещанова, И. В. ПОСОБИЕ ПО ТЕХНИЧЕСКОМУ ПЕРЕВОДУ ДЛЯ
НАПРАВЛЕНИЯ
«ЭЛЕКТРОЭНЕРГЕТИКА»
(НА
МАТЕРИАЛЕ
АНГЛИЙСКОГО ЯЗЫКА) / учеб. пособие / И. В. Алещанова, Н. А.
Фролова; ВолгГТУ, Волгоград, 2011. – 116 с.
ISBN 978-5-9948-0650-0
Настоящее пособие ставит своей задачей дальнейшее
формирование
и
развитие
у
студентов
направления
«Электроэнергетика»
навыков
работы
с
текстами
по
специальности и умений высказываться на иностранном языке по
вопросам, связанным с будущей профессией.
Материалы пособия дают представление о специфике
профессиональной деятельности будущего инженера, расширяют
знания, полученные студентами при изучении базового учебника
английского языка для технических вузов.
Библиогр.: 5 назв.
Печатается по решению редакционно-издательского совета
Волгоградского государственного технического университета

ISBN 978-5-9948-0650-0
2
Волгоградский
государственный
технический
университет, 2011
ПРЕДИСЛОВИЕ
Учебное пособие по техническому переводу для студентов
направления «Электроэнергетика» разработано на основе учебной
программы курса английского языка для инженеров. В пособии
предлагается комплексный подход к овладению навыками работы
с профессиональной литературой на английском языке, а именно
терминологией сферы электроэнергетики и электротехники.
Сочетание
современных
аутентичных
материалов,
адаптированных
для
студентов
технического
профиля,
разнообразных упражнений, формирующих навыки применения
специализированной профессиональной терминологии, нацелено
на демонстрацию общих и специфических правил перевода
англоязычных технических текстов, обучение работе с иноязычной
профессиональной литературой, закрепление навыков различных
видов чтения, полученных в процессе изучения базового учебного
курса.
Структура и содержание учебного пособия определяются
требованиями обучения иностранному языку в вузе технического
профиля с учетом современных методико-дидактических приемов
развития и формирования иноязычной коммуникативной
компетенции в профессионально-ориентированных ситуациях.
Пособие состоит
из девятнадцати тематических уроков,
приложения, терминологического словаря по электроэнергетике.
Тексты первого тематического раздела пособия на
профильном уровне сопровождаются комплексом упражнений,
направленных на развитие навыков работы с научно-технической
информацией, овладение иноязычным
терминологическим
словарем, различными видами чтения. Дополнительные
профильные тексты, содержащиеся в приложении, могут быть
использованы для организации самостоятельной работы
студентов, проведения контрольных работ и подготовки
семестровых
заданий.
Терминологический
словарь
по
электроэнергетике
и
электротехнике
предназначен
для
организации
адекватного
понимания
содержания
специализированных текстов и снятия трудностей при
последовательном изучении профессиональной терминологии.
Авторы пособия надеются, что представленные материалы
могут быть полезны не только студентам соответствующей
3
специальности, но и всем специалистам, обучающимся работе с
англоязычной научно-технической информацией.
UNIT 1
I. Read the text.
THE NATURE OF ELECTRICITY
Practical electricity is produced by small atomic particles known as
electrons. It is the movement of these particles which produces the effects of heat and light.
The pressure that forces these atomic particles to move, the effects
they encounter opposition and how these forces are controlled are some
of the principles of electricity.
Accepted atomic theory states that all matter is electrical in structure. Any object is largely composed of a combination of positive and
negative particles of electricity. Electric current will pass through a
wire, a body, or along a stream of water. It can be established in some
substances more readily than in others, that all matter is composed of
electric particles despite some basic differences in materials. The science
of electricity then must begin with a study of the structure of matter.
Matter is defined as any substance which has mass (or weight) and
occupies space. This definition should be broad enough to cover all
physical objects in the universe. Wood, water, iron, and paper are some
examples of matter. Energy is closely related to, but not to be confused
with, matter. Energy does not have mass, and it does not occupy space.
Heat and light are examples of energy.
The smallest particle of matter which can be recognized as an original substance was thought to be a unit called the atom. Recently scientists have found particles even smaller than atoms, but our theories are
still based on the atom. The atom consists of a nucleus and a cloud of
electrons. It is generally agreed that the electrons are small particles of
electricity, which are negative in nature. These particles orbit the nucleus in much the same fashion that planets orbit a sun.
II. Guess the meaning of the following international words:
Electricity, electron, effect, structure, combination, material, mass,
energy, atom, orbit.
III. Give the English equivalents for the words below:
4
1) производить; 2) частица; 3) тепло и свет; 4) напряжение; 5)
сила; 6) вещество; 7) положительный; 8) отрицательный; 9)
электрический ток; 10) вес; 11) ядро.
IV. Translate into Russian the words and expressions from the
text:
1) atomic particle; 2) effects of heat and light; 3) encounter opposition; 4) principles of electricity; 5) composed (of); 6) pass through a
wire; 7) structure of matter; 8) occupy space; 9) physical objects; 10) a
cloud of electrons; 11) in the same fashion.
V. Complete the sentences using the text:
1. Electricity is produced by …
2. The effects of heat and light are produced by …
3. According to the accepted atomic theory all matter is …
4. Any object is composed of …
5. Matter is defined as …
6. Energy must not be confused with …
7. The atom consists of …
8. The smallest particle of matter is …
9. Most theories are based on …
10. Electrons are …
VI. Answer the questions:
1) What are the principles of electricity? 2) What must the science
of electricity begin with? 3) Are there any differences between energy
and matter? What are they? 4) What is recognized as an original substance now?
VII. Topics for discussion:
1) The nature of electricity;
2) The nature of matter;
3) Contents of atomic theory.
UNIT 2
I. Read the text.
ELECTRIC CURRENT
The electric current is a quantity of electrons flowing in a circuit
per second of time. The unit of measure for current is ampere. If one
coulomb passes a point in a circuit per second then the current strength
is 1 ampere. The symbol for current is I.
5
The current which flows along wires consists of moving electrons.
The electrons move along the circuit because the electromotive force
drives them. The current is directly proportional to the e. m. f.
In addition to traveling through solids, however, the electric current can flow through liquids as well and even through gases. In both
cases it produces some most important effects to meet industrial requirements.
Some liquids, such as melted metals for example, conduct current
without any change to themselves. Others, called electrolytes, are found
to change greatly when the current passes through them.
When the electrons flow in one direction only, the current is known
to be d.c., that is, direct current. The simplest source of power for the
direct current is a battery, for a battery pushes the electrons in the same
direction all the time (i.e., from the negatively charged terminal to the
positively charged terminal).
The letters a.c. stand for alternating current. The current under consideration flows first in one direction and then in the opposite one. The
a.c. used for power and lighting purposes is assumed to go through 50
cycles in one second. One of the great advantages of a.c. is the ease
with which power at low voltage can be changed into an almost similar
amount of power at high voltage and vice versa. Hence, on the one
hand alternating voltage is increased when it is necessary for longdistance transmission and, on the other hand, one can decrease it to meet
industrial requirements as well as to operate various devices at home.
Although there are numerous cases when d.c. is required, at least
90 per cent of electrical energy to be generated at present is a.c. In fact,
it finds wide application for lighting, heating, industrial, and some other
purposes.
II. Guess the meaning of the following international words:
electric, ampere, symbol, proportional, industrial, metal, electrolyte, battery, generate.
III. Give the English equivalents for the words and word combinations below:
1) течь, протекать; 2) цепь, схема; 3) единица измерения;
4) провод; 5) электродвижущая сила; 6) твердое тело; 7) жидкость;
8) проводить (ток); 9) источник энергии; 10) постоянный ток;
11) переменный ток; 12) напряжение.
IV. Give Russian equivalents for the following:
6
1) to meet industrial requirements; 2) melted metals; 3) to push in
the same direction; 4) negatively (positively) charged terminal;
5) power and lightning purposes; 6) long-distance transmission; 7) to
operate devices; 8) to find wide application.
V. Say whether these sentences are true or false:
1. The symbol for current is I.
2. The electric current can flow only through liquids.
3. The current can be of two types: direct current and alternating
current.
4. The alternating current flows in one direction.
5. A battery is the simplest source of power for the direct current.
6. Direct current finds wider application than alternating current.
7. Electrolytes don’t change greatly when current passes through
them.
8. One of the great advantages of alternating current is the ease
with which voltage can be changed.
VI. Fill in the blanks, using the words from the box:
direct current, solids, conduct, electric current, liquids,
voltage, alternating current
A quantity of moving electrons flowing in a circuit is the
a) _______. The current can flow through b) ________ and c)
________. Some liquids d) _______ current without any change to
themselves. When the electrons flow in one direction only, the current
is known to be e) _______. The current flowing first in one direction
and then in the opposite one is f) _______. Such advantage of alternating current as alternating g) _______ finds wide industrial and household application.
VII. State the questions to the underlined words:
1. Melted metals conduct current without any change to themselves.
2. Alternating voltage can be changed to operate various devices at
home.
3. A battery pushes the electrons in the same direction.
4. The alternating current is used for power and lightning purposes.
5. Alternating current accounts for 90 per cent of electrical energy
generated now.
7
VIII. Say some sentences about the types of electric current
and its properties.
UNIT 3
I. Read the text.
EFFECTS PRODUCED BY A CURRENT
The current flow is detected and measured by any of the effects
that it produces. There are three important effects accompanying the
motion of electric charges: the heating, the magnetic, and chemical effects, the latter is manifested under special conditions.
The production of heat is perhaps the most familiar among the
principal effects of an electric current. The heating effect of the current
is found to occur in the electric circuit itself. It is detected owing to an
increase in the temperature of the circuit. This effect represents a continual transformation of electric energy into heat. For instance, the current which flows through the filament of an incandescent lamp heats
that filament to a high temperature.
The heat produced per second depends both upon the resistance of
the conductor and upon the amount of current carried through it. The
thinner the wire is, the greater the developed heat is. On the contrary, the
larger the wire is, the more negligible the heat produced is. Heat is greatly desirable at times but at other times it represents a waste of useful energy. It is this waste that is generally called "heat loss" for it serves no
useful purposes and decreases efficiency.
The heat developed in the electric circuit is of great practical importance for heating, lighting and other purposes. Owing to it people
are provided with a large number of appliances, such as: electric lamps
that light our homes, streets and factories, electrical heaters that are
widely used to meet industrial requirements, and a hundred and one
other necessary and irreplaceable things which have been serving mankind for so many years.
The electric current can manifest itself in some other way. It is the
motion of the electric charges that produces the magnetic forces. A conductor of any kind carrying an electric current, a magnetic field is set up
about that conductor. This effect exists always whenever an electric current flows, although in many cases it is so weak that one neglects it in
dealing with the circuit. An electric charge at rest does not manifest any
8
magnetic effect. The use of such a machine as the electric motor has become possible owing to the electromagnetic effect.
The last effect to be considered is the chemical one. The chemical
effect is known to occur when an electric current flows through a liquid. Thanks to it a metal can be transferred from one part of the liquid
to another. It may also effect chemical changes in the part of the circuit
comprising the liquid and the two electrodes which are found in this
liquid. Any of the above mentioned effects may be used for detecting
and measuring current.
II. Give the English equivalents for the following words:
1) выявлять, обнаруживать
6) лампа накаливания
2) измерять
7) прибор
3) заряд
8) потеря энергии
4) нить накала
9) освещать
5) тепловой эффект
10) обнаруживаться, проявляться
III. Guess the meaning of the following international words:
transformation, temperature, chemical, magnetic, special, practical,
motor, electrode.
IV. Insert words and expressions:
1. The current flow is (выявляется и измеряется) by any of
the effects that it produces.
2. There are three important effects accompanying the motion of
(электрические заряды).
3. The current which flows through the (нить накала лампы
накаливания) heats that filament to a high temperature.
4. Heat represents (потерю полезной энергии) at times.
5. Electric lamps (освещать) our homes, streets and factories.
6. The electric current can (проявлять) magnetic effect.
V. Choose the correct translation:
The heating effect of the current is found to occur in the electric
circuit itself.
1. Установлено, что тепловой эффект электрического тока
появляется в самой электрической цепи.
2. Тепловой эффект электрического тока может появляться в
самой электрической цепи.
3. Установлено, что тепловой эффект электрического тока
должен появляться в самой электрической цепи.
9
Когда в любом проводнике появляется электрический ток,
вокруг него возникает магнитное поле.
1. A conductor of any kind carrying an electric current, a magnetic field was set up about that conductor.
2. A conductor of any kind have been carrying an electric current,
a magnetic field is set up about that conductor.
3. A conductor of any kind carrying an electric current, a magnetic field is set up about that conductor.
Последний эффект, который необходимо рассмотреть –
химический эффект.
1. The last effect is considered to be the chemical one.
2. The last effect to be considered is the chemical one.
3. The last effect would be considered the chemical one.
Известно, что химический эффект возникает, когда
электрический ток проходит через жидкость.
1. The chemical effect is known to occur when an electric current
flows through a liquid.
2. The chemical effect is famous to occur when an electric current
flows through a liquid.
3. The chemical effect may be known to occur when an electric
current flows through a liquid.
Именно движение электрических зарядов порождает
магнитные силы.
1. The motion of the electric charges produces the magnetic forces.
2. It is the motion of the electric charges that produces the magnetic forces.
3. The motion of the electric charges is certain to produce the
magnetic forces.
VI. Answer the questions:
1. What effects does the current flow produce?
2. How is the heating effect detected?
3. What does the heat produced depend upon?
4. What is called “heat loss”?
5. How is the magnetic effect set up?
6. What is the main condition of the magnetic effect existence?
7. When does the chemical effect occur?
VII. Fill in the chart:
10
Electric current effect
Practical application
1. heating effect
…..
2. …..
use of electric motor
3. chemical effect
…..
VIII. Speak about the principal effects of an electric current,
using the text and chart above.
UNIT 4
I. Read the text.
ELECTRIC CIRCUITS
The concepts of electric charge and potential are very important in
the study of electric currents. When an extended conductor has different
potentials at its ends, the free electrons of the conductor itself are caused
to drift from one end to the other. The potential difference must be maintained by some electric source such as electrostatic generator or a battery
or a direct current generator. The wire and the electric source together
form an electric circuit, the electrons are drifting around it as long as the
conducting path is maintained.
There are various kinds of electric circuits such as: open circuits,
closed circuits, series circuits, parallel circuits and short circuits.
To understand the difference between the following circuit connections is not difficult at all. If the circuit is broken or “opened” anywhere, the current is known to stop everywhere. The circuit is broken
when an electric device is switched off. The path along which the electrons travel must be complete otherwise no electric power can be supplied from the source to the load. Thus the circuit is “closed” when an
electric device is switched on.
When electrical devices are connected so that the current flows
from one device to another, they are said “to be connected in series”.
Under such conditions the current flow is the same in all parts of the
circuit as there is only a single path along which it may flow. The electrical bell circuit is considered to be a typical example of a series circuit. The “parallel” circuit provides two or more paths for the passage
of current. The circuit is divided in such a way that part of the current
11
flows through one path and part through another. The lamps in the
houses are generally connected in parallel.
The “short” circuit is produced when the current can return to the
source of supply without control. The short circuits often result from
cable fault or wire fault. Under certain conditions the short circuit may
cause fire because the current flows where it was not supposed to flow.
If the current flow is too great a fuse is used as a safety device to stop
the current flow.
II. Guess the meaning of the following international words:
concept, potential, electrostatic generator, aluminum, parallel, typical, control.
III. Give the English equivalents for the following words and
word combinations:
1) электрические цепи, 2) электрический заряд, 3) проводник,
4) сопротивление, 5) движение электронов, 6) изолятор, 7) короткое
замыкание, 8) энергия.
IV. Say whether these sentences are true or false:
1. When an extended conductor has the same potential at its ends,
free electrons are drifting from one end to another.
2. The wire and the electric source together form an electric circuit.
3. A path of any material will allow current to exist.
4. Silver, copper and gold oppose very strongly.
5. The slighter the opposition is, the better the insulator is.
6. There is only one type of electric circuit.
7. We close the circuit when we switch on our electric device.
V. Complete the sentences using the text:
1. The potential difference must be maintained by …
2. Materials that offer slight opposition are called …
3. The best insulators are …
4. There are various kinds of electric circuits such as …
5. We “open” the circuit when …
6. We “close” the circuit when …
7. The “short” circuit is produced when …
8. A fuse is …
VI. Answer the questions:
1. What concepts are very important in study of electric current?
2. What forms an electric circuit?
12
3. What materials are the best conductors and insulators?
4. What kinds of electric circuits do you know?
5. How can we open and close the circuit?
6. When are electrical devices connected in series?
7. What is an example of a series circuit?
8. What can you say about “parallel” circuits?
9. What does the short circuit often result from?
VII. Talk on the types of electric circuits.
UNIT 5
I. Read the text.
ALTERNATING CURRENT
Current is defined as increment of electrons. The unit for measuring
current was named in honor of A.M. Ampere, the French physicist. Thus it
is called ampere. The symbol for current is I. The electric current is a quantity of electrons flowing in a circuit per second of time. The electrons move
along the circuit because the e.m.f. drives them. The current is directly
proportional to the e.m.f.
A steam of electrons in a circuit will develop a magnetic field
around the conductor along which the electrons are moving. The
strength of the magnetic field depends upon the current strength along
the conductor. The direction of the field is dependant upon the direction
of the current.
If the force causing the electron flow is indirect, the current is
called direct (d.c.). If the force changes its direction periodically the
current is called alternative (a.c.).
Alternating current is the current that changes direction periodically. The electrons leave one terminal of the power supply, flow out
along the conductor, stop, and then flow back toward the same terminal. A voltage that caused current reverses its polarity periodically. This
is properly called an alternating voltage. The power supply that provides the alternating voltage actually reverses the polarity of its terminals according to a fixed periodic pattern. A given terminal will be negative for a specific period of time and drive electrons out through the
circuit. Then, the same terminal becomes positive and attracts electrons
13
back from the circuit. This voltage source cannot be a battery. It must
consist of some types of rotating machinery.
II. Guess the meaning of the following international words:
1) physicist, 2) ampere, 3) symbol, 4) second, 5) polarity, 6) period, 7) battery.
III. Translate into Russian the words and expression from the
text:
1) increment of electrons; 2) measuring; 3) to drive; 4) directly proportional; 5) conductor; 6) strength; 7) causing force; 8) terminal; 9) to
flow; 10) to reverse.
IV. Give the English equivalents for the words below:
1) переменный ток, 2) за секунду, 3) количество электронов, 4)
поток электронов, 5) магнитное поле, 6) направление, 7) зависеть,
8) усиление, 9) источник напряжения, 10) ротационный механизм.
V. Complete the sentences using the text:
1. The electric current is …
2. The unit for measuring current is …
3. A steam of electrons in a circuit will develop …
4. The current is called direct if …
5. The current is called alternating if…
6. Alternating voltage is …
7. Alternating voltage source cannot be …
VI. Answer the questions:
1. Why do electrons move along the circuit?
2. What does the strength of the magnetic field depend upon?
3. What does the direction of the field depend upon?
4. What is the way of alternating current electrons?
5. How does the alternating voltage power supply reverse the polarity of terminals?
VII. Talk on the properties of the electric current and its types.
UNIT 6
I. Read the text.
14
CONDUCTORS AND INSULATORS
All substances have some ability of conducting the electric current,
however, they differ greatly in the ease with which the current can pass
through them. Solid metals conduct electricity with ease while nonmetals do not allow it to flow freely. Thus, there are conductors and
insulators.
What do the terms "conductors" and "insulators" mean?
This difference is expressed by what is called electrical conductivity of the body. It depends upon the atomic constitution of the body.
Substances through which electricity is easily transmitted are called
conductors. Any material that strongly resists the electric current flow
is known as an insulator.
Conductance, that is the conductor's ability of passing electric
charges, depends on the four factors: the size of the wire used, its length
and temperature as well as the kind of material to be employed.
A large conductor will carry the current more readily than a thinner
one. To flow through a short conductor is certainly easier for the current
than through a long one in spite of their being made of similar material.
Hence, the longer the wire, the greater is its opposition, that is resistance,
to the passage of current.
There is a great difference in the conducting ability of various substances. Almost all metals are good electric current conductors. The
best conductors are silver, copper, gold and aluminum. Nevertheless,
copper carries the current more freely than iron; and silver, in its turn, is
a better conductor than copper. Copper is the most widely used conductor. The electrically operated devices are connected to the wall socket
by copper wires.
A material which resists the flow of the electric current is called an insulator.
The higher the opposition is, the better the insulator is. There are
many kinds of insulation used to cover the wires. The kind used depends upon the purposes the wire or cord is meant for. The insulating
materials generally used to cover the wires are rubber, asbestos, glass,
plastics and others. The best insulators are oil, rubber and glass.
Rubber covered with cotton, or rubber alone is the insulating material usually used to cover desk lamp cords and radio cords.
Glass is the insulator to be often seen on the poles that carry the
telephone wires in city streets. Glass insulator strings are usually suspended from the towers of high voltage transmission lines. One of the
15
most important insulators of all, however, is air. That is why power
transmission line wires are bare wires depending on air to keep the current from leaking off.
Conducting materials are by no means the only materials to play an
important part in electrical engineering. There must certainly be a conductor, that is a path, along which electricity is to travel and there must
be insulators keeping it from leaking off the conductor.
II. Give the Russian equivalents for the words and word combinations below:
1) conductors; 2) insulators; 3) transmit; 4) resistance; 5) passage
of current; 6) socket; 7) to connect to; 8) cord; 9) high voltage transmission line; 10) leak off.
III. Find in the text the sentences with the following related
words and translate them:
conducting – conductor – conductivity – conductance.
IV. Make up sentences corresponding to the information given in
the text
Copper
used to cover desk lamp cords
Silver
one of the most important insulators of all
is
Rubber
the most widely used conductor
Glass
a better conductor than copper
Iron
not so good conductor as copper
Air
the insulator usually used on the city street
poles and high voltage transmission lines
V. State questions to the underlined words:
1) Solid metals conduct electricity with ease.
2) Conductance depends on the four factors.
3) There are many kinds of insulation used to cover the wires.
4) Insulators keep electricity from leaking off the conductor.
5) Conductors play an important role in electrical engineering.
VI. Say whether these sentences are true or false:
1) Electrical conductivity of a body depends upon its atomic constitution.
2) There is no difference in the conducting ability of various substances.
3) The longer the wire is the weaker its opposition is.
16
4) The kind of the insulating material depends upon the purpose it
is meant for.
5) Conductors are substances through which electricity is easily
transmitted.
6) Insulators do not allow the electric current to flow freely.
VII. Talk on the conducting ability of various substances and
their application in electrical engineering. Use the table in Task IV.
UNIT 7
I. Read the text.
SEMICONDUCTORS
There are materials that really occupy a place between the conductors of the electric current and the non-conductors. They are called semiconductors. These materials conduct electricity less readily than conductors but much better than insulators.
Semiconductors include almost all minerals, many chemical elements, a great variety of chemical compounds, alloys of metals, and a
number of organic compounds. Like metals, they conduct electricity but
they do it less effectively. In metals all electrons are free and in insulators they are fixed. In semiconductors electrons are fixed, too, but the
connection is so weak that the heat motion of the atoms of a body easily
pulls them away and sets them free.
Minerals and crystals appear to possess some unexpected properties. It is well known that their conductivity increases with heating and
falls with cooling. As a semiconductor is heated, free electrons in it increase in number, hence, its conductivity increases as well.
Heat is by no means the only phenomenon influencing semiconductors. They are sensitive to light, too. Take germanium as an example. Its electrical properties may greatly change when it is exposed to
light. With the help of a ray of light directed at a semiconductor, we can
start or stop various machines, effect remote control, and perform lots
of other useful things. Just as they are influenced by falling light, semiconductors are also influenced by all radiation. Generally speaking, they
are so sensitive that a heated object can be detected by its radiation.
Such dependence of conductivity on heat and light has opened up
great possibilities for various uses of semiconductors. The semiconductor devices are applied for transmission of signals, for automatic control
of a variety of processes, for switching on engines, for the reproduction
of sound, protection of high-voltage transmission lines, speeding up of
17
some chemical reactions, and so on. On the one hand they may be used
to transform light and heat energy directly into electric energy without
any complex mechanism with moving parts, and on the other hand, they
are capable of generating heat or cold from electricity.
Russian engineers and scientists turned their attention to semiconductors many years ago. They saw in them a means of solving an old
engineering problem, namely, that of direct conversion of heat into
electricity without boilers or machines. Semiconductor thermocouples
created in Russia convert heat directly into electricity just as a complex
system consisting of a steam boiler, a steam engine and a generator
does it.
II. Give the English equivalents for the words and word combinations below:
1) полупроводник; 2) химическое соединение; 3) сплав; 4)
освобождать; 5) свойство; 6) увеличивать(ся); 7) охлаждение; 8)
чувствительный к; 9) выставлять; 10) луч; 11) направлять на; 12)
дистанционное управление; 13) находить, обнаруживать; 14)
защита; 15) ускорение; 16) решить инженерную проблему; 17)
термоэлемент.
III. Guess the meaning of the following international words:
element, organic, mineral, crystal, phenomenon, automatic, control, process, reproduction, conversion, boiler.
IV. Join the beginnings and ends:
Semiconductors are sensitive … conductors of the electric curto…
rent and non-conductors.
Semiconductors convert heat … dependence of conductivity
into …
on heat and light.
Semiconductors occupy a place … heat and light.
between …
Semiconductors conduct elec- …into electricity without matricity …
chines.
Great possibilities for various … less effectively than metals.
uses of semiconductors are connected with …
As a semiconductor is heated … … its conductivity increases as
well.
V. Insert words and expressions:
18
1) Semiconductors include a great variety of (химические
соединения), (сплавы металлов).
2) Minerals and crystals appear to possess some unexpected
(свойства). Their conductivity increases with (нагревание) and falls
with (охлаждение).
3) With the help of a ray of light directed at a semiconductor, we
can effect (дистанционное управление).
4) The semiconductor devices are applied for (автоматический
контроль) of a variety of processes, for the (воспроизведение) of
sound, (ускорение) of some chemical reactions.
5) (Термоэлементы) created in Russia convert heat directly into electricity.
VI. Answer the questions:
1) What do semiconductors include? 2) How does the atomic
structure of semiconductors influence their properties? 3) What
phenomena influence semiconductors? 4) What are the semiconductor
devices applied for? 5) How do semoconductors help in solving
engineering problems?
VII. Talk on the properties of semiconductors and their practical application.
UNIT 8
I. Read the text.
ELECTRICITY AND MAGNETISM
TEXT 1
ELECTROMOTIVE FORCE
When free electrons are dislodged from atoms, electrical energy is
released. Chemical reaction, friction heat and electromagnetic induction
will cause electrons to move from one atom to another. Whenever energy in any form is released, a force called electromotive (e. m. f.) is
developed.
If the force exerts its effort always in one direction, it is called direct;
and if the force changes its direction of exertion periodically, it is called
alternating. The chemical reaction in a dry cell, heat and friction are
sources of a unidirectional force. Electromagnetic induction produces an
alternating force. The direction of force depends on the direction in
which the field is cut. Whenever an e. m. f. is developed, there is also a
19
field of energy called an electrostatic field, which can be detected by an
electroscope and measured by an electrometer.
TEXT 2
ELECTROMAGNETIC INDUCTION
An electromotive force is induced in the conductor when there is a
change in the magnetic field surrounding a conductor. This induced
electromotive force may be produced in several ways as follows:
a) A conductor may move in a stationary magnetic field of constant
strength.
b) A stationary conductor may be exposed to a moving magnetic
field of constant strength.
c) The strength of the field surrounding the conductor may change
without any motion of conductor or magnetic circuit.
The electromotive force induced by motion of a conductor or a magnetic flux is the same when the conductor rotates and the flux is stationary or the flux rotates and the conductor is stationary. If both, conductor
and flux, rotate in the same direction at the same speed, no electromotive
force will be produced, if they rotate at the same speed but in opposite
directions, the electromotive force induced would be twice as that which
would be induced, if one of them was stationary. An electromotive force
is not induced when a conductor is moved parallel to the lines of force,
but only when it moves at an angle with these lines.
Any motion across the direction of the lines, however, will produce
an electromotive force in the conductor. For this reason, the conductor
is said to „cut" the lines of force. The actual electromotive force induced in the conductor depends upon the nature at which the flux is cut.
TEXT 3
ELECTROMOTIVE FORCE AND RESISTANCE
The electromotive force is the very force that moves the electrons
from one point in an electric circuit towards another. In case this e.m.f.
is direct, the current is direct. On the other hand, were the electromotive
force alternating, the current would be alternating, too. The e.m.f. is
measurable and it is the volt that is the unit used for measuring it. A
current is unable to flow in a circuit consisting of metallic wires alone.
A source of an e.m.f. should be provided as well. The source under
consideration may be a cell or a battery, a generator, a thermocouple or
a photocell, etc.
In addition to the electromotive force and the potential difference
reference should be made to another important factor that greatly influ20
ences electrical flow, namely, resistance. All substances offer a certain
amount of opposition, that is to say resistance, to the passage of current.
This resistance may be high or low depending on the type of circuit and
the material employed. Glass and rubber offer a very high resistance
and, hence, they are considered as good insulators. All substances do
allow the passage of some current provided the potential difference is
high enough.
Certain factors can greatly influence the resistance of an electric
circuit. They are the size of the wire, its length, and type. In short, the
thinner or longer the wire is, the greater the resistance offered is.
II. Give the English equivalents for the words below. Find in
the text the sentences with these words and translate them:
1) трение; 2) электродвижущая сила; 3) элемент; 4)
параллельное соединение; 5) сопротивление; 6) электромагнитная
индукция; 7) переменный ток; 8) постоянное напряжение; 9)
фотоэлемент.
III. Guess the meaning of the following international words
and translate them:
reaction, electrostatic, electrometer, electroscope, volt, metallic.
IV. Say whether these sentences are true or false:
1. Alternating force always exerts its effort in one direction.
2. Alternating force is produced by electromagnetic induction.
3. The electromotive force is induced by motion of a conductor.
4. Resistance is an important factor that greatly influences electrical flow.
5. The type of the material employed doesn’t influence the resistance.
V. Answer the questions:
1) What factors cause the motion of electrons from one atom to
another? 2) When is the electromotive force developed? 3) When does
an electrostatic field appear? 4) How is the electromotive force induced? 5) What unit is used for measuring the electromotive force? 6)
What are the sources of electromotive force? 7) What is called “resistance”? 8) How do the types of circuit and material influence the resistance? 9) Name the factors that influence the resistance of an electric
circuit.
21
UNIT 9
I. Read the text.
DYNAMOS
The term „dynamo" is applied to machines which convert either
mechanical energy into electrical energy or electrical energy into mechanical energy by utilizing the principle of electromagnetic induction.
A dynamo is called a generator when mechanical energy supplied in the
form of rotation is converted into electrical energy. When the energy
conversion takes place in the reverse order the dynamo is called a motor. Thus a dynamo is a reversible machine capable of operation as a
generator or motor as desired.
A generator does not create electricity, but generates or produces
an induced electromotive force, which causes a current to flow through
a properly insulated system of electrical conductors external to it. The
amount of electricity obtainable from such a generator is dependent
upon the mechanical energy supplied. In the circuit external to a generator the e.m.f. causes the electricity to flow from a higher or positive
potential to a lower or negative potential. In the internal circuit of a
generator the e.m.f. causes the current to flow from a lower potential to
a higher potential. The action of a generator is based upon the principles of electromagnetic induction.
The dynamo consists essentially of two parts: a magnetic field,
produced by electromagnets, and a number of loops or coils of wire
wound upon an iron core, forming the armature. These parts are arranged
so that the number of the magnetic lines of force of the field threading
through the armature, coils will be constantly varied, thereby producing a
steady e.m.f. in the generator or a constant torque in the motor.
II. Fill in the gaps with the words given below:
to convert, reversible, obtainable, induction, loops.
1. The term “dynamo” is applied to machines which ..... either mechanical energy into electrical or on the contrary electrical energy into mechanical energy.
2. A dynamo is a ..... machine capable of operation as a generator
or motor as desired.
3. The amount of electricity ..... from such a generator is dependent
upon the mechanical energy supplied.
22
4. The action of a generator is based upon the principles of electromagnetic .......
5. The dynamo consists of two parts: a magnetic field, produced by
electromagnets, and a number of ..... or coils of wire.
III. Find the Russian equivalents for the following English
words and word combinations:
1) to be applied to smth.; 2) to convert smth. into smth.; 3) rotation;
4) to utilize; 5) a properly insulated system; 6) internal (external) circuit;
7) capable of operation; 8) positive (negative) potential; 9) reverse order;
10) energy conversion.
IV. Answer the questions.
1. What term can be applied to machines converting mechanical
energy into electrical and vice versa?
2. What kind of machine is a dynamo?
3. What is the function of a generator?
4. What is the action of a generator based upon?
5. What parts does the dynamo consist of?
V. Talk on the dynamo action.
UNIT 10
I. Read the text.
GENERATORS
The powerful, highly efficient generators and alternators that are in
use today operate on the same principle as the dynamo invented by the
great English scientist Faraday in 1831.
Dynamo-electric machines are used to supply light, heat and power
on a large scale. These are the machines that produce more than 99.99
per cent of all the world's electric power.
There are two types of dynamos – the generator and the alternator.
The former supplies d.c. which is similar to the current from a battery
and the latter provides a.c. To generate electricity both of them must be
continuously provided with energy from some outside source of mechanical energy such as steam engines, steam turbines or water turbines.
23
A generator is an electric machine, which converts mechanical energy into electric energy. There are direct-current (d.c.) generators and
alternating-current (a.c.) generators. Their construction is much alike. A
d.c. generator consists of stationary and rotating elements. The stationary elements are: the yoke or the frame and the field structure. The
yoke forms the closed circuit for the magnetic flux. The function of the
magnetic structure is to produce the magnetic field.
The rotating elements are: true armature and the commutator. They
are on the same shaft. The armature consists of the core and the winding. The winding is connected to the commutator. With the help of the
brushes on the commutator that conduct the electric current to the line
the winding is connected to the external circuit. The stationary element of
an a-c. generator is called a stator. The rotating element is called a rotor.
The essential difference between a d.c. generator and a.c. generator
is that the former has a commutator by means of which the generated e.
m. f. is made continuous, i.e. the commutator mechanically rectifies the
alternating e.m.f. so that it is always of the same polarity.
D.c. generators are used for electrolytic processes such as electroplating. Large d.c. generators are employed in such manufacturing processes as steel making. The d.c. generator of small capacities is used for
various special purposes such as arc welding, automobile generators,
train lighting systems, etc. It also finds rather extensive use in connection with communication systems.
II. Give the Russian equivalents for the following English
words and word combinations:
1) generator; 2) alternator; 3) steam turbine; 4) water turbine;
5) armature; 6) rotor; 7) stationary; 8) commutator; 9) stator; 10) yoke;
11. brushes; 12) core; 13) frame; 14) winding.
III. Fill in the blanks
1. A generator is an electric machine, which a) … mechanical energy into electrical energy.
2. A direct-current generator consists of в) … .
3. The dynamo was invented by c) … in 1831.
4. The d.c. generator is used for various purposes such as d) … .
IV. Work out the plan of the text.
V. Speak on the following points:
24
1. The construction of a generator.
2. The direct – current generators and their industrial application.
3. Industrial application of D.C. Generators.
UNIT 11
I. Read the text.
MAIN STRUCTURAL ELEMENTS OF A D. C. MACHINE
A direct-current machine consists of two main parts, a stationary
part, usually called the stator, designed mainly for producing a magnetic flux, and a rotating part, called the armature or the rotor. The stationary and rotating parts should be separated from each other by an airgap. The stationary part of a d.c. machine consists of main poles, designed to create the main magnetic flux; commutating poles interposed
between the main poles; and a frame. It should be noted here that sparkless operation of the machine would be impossible without the commutating poles. Thus, they should ensure sparkless operation of the
brushes at the commutator.
The main pole consists of a laminated core the end of which facing
the armature carries a pole shoe and a field coil through which direct
current passes. The armature is a cylindrical body rotating in the space
between the poles and comprising a slotted armature core, a winding
inserted in the armature slots, a commutator, and a brush gear.
The frame is the stationary part of the machine to which are fixed
the main and commutating poles and by means of which the machine is
bolted to its bedplate. The ringshaped portion which serves as the path
for the main and commutating pole fluxes is called the yoke. Endshields or frame-heads which carry the bearings are also attached to the
frame.
Of these main structural elements of the machine the yoke, the pole
cores, the armature core and the air-gap between the armature core and
the pole core are known to form the magnetic circuit while the pole
coils, the armature windings, the commutator and brushes should form
the electric circuit of the machine.
II. Translate the following phrases, using the given variants of
translation.
25
To consist – состоять: to consist of a stationary part and a rotating
part; separated – отдельный, изолированный: the stationary and rotating parts should be separated from each other by an air gap; to serve –
служить в качестве чего-либо: the ringshaped portion or yoke serves
as a path for the main and commutating pole fluxes.
II. Join the beginnings and the ends
Beginnings
Ends
The stationary parts of a d.c. ma- a laminated core the end of
chine are ....
which carries a pole shoe and a
field coil
The two main parts of a direct main poles, commutating poles
current machine are ....
and a frame
The main pole consists of ....
A stationary part or stator and a
rotating part, called the armature
or the rotor
IV. Arrange synonyms in pairs and memorize them:
a) to consist of; to be separated from; to create; to be interposed between; to pass; to rotate;
в) to be divided with; to produce; to introduce into; to permeate; to
roll; to revolve; to comprise.
V. Write out the names of the machine parts and describe their
operational characteristics.
UNIT 12
I. Read the text.
THE ALTERNATOR
The alternator is an electric machine for generating an alternating
current by a relative motion of conductors and a magnetic field. The
machine usually has a rotating field and a stationary armature. In a synchronous alternator the magnetic field is excited with a direct current.
The direction of an induced e.m.f. is reversed each time when a conductor passes from a pole of one polarity to a pole at another polarity. Most
machines of this type are used for lighting and power, but there are alternators with a revoking armature and a stationary field. They are used
in small sizes mostly for special purposes.
26
Any electrical machine is reversible. When a machine is driven by a
source of mechanical power, it works as a generator and delivers electrical power. If it is connected to a source of electrical power, it produces
mechanical energy, and operates as a motor. The alternator may also be
operated as a motor.
The a.c. generator, or alternator, does not differ in principle from
the d.c. generator. The alternator consists of a field structure and an armature. The field structure is magnetized by a field winding carrying a
direct current. An electromotive force is generated in tine winding of
the armature. In alternators the field is usually the rotating element and
the armature is stationary. This construction has a number of advantages. Only two rings are needed with a rotating field. These rings
carry only a relatively light field current, at a voltage generally of 125,
and seldom exceeding 250. The insulation of such rings is not difficult.
A stationary armature requires no slip rings. The leads from the armature can be continuously insulated from the armature winding to the
switchboard, leaving no bare conductor. The alternator with a rotating
field may be further divided into the vertical and the horizontal types.
The vertical type is usually applied for large water-wheel generators where it is desirable to mount the water turbine below the generator. The more common horizontal type is used with diesel and steam
engine drive. A low-speed alternator of this type is suitable for a diesel
engine drive, a high speed alternator is suitable for a steam turbine drive.
II. Form nouns, denoting devices with the help of the suffix -or.
Translate them.
To alternate, to commute, to conduct, to generate.
III. Read the text and write out the key words, characterizing
the alternator.
IV. Translate the following word combinations paying attention to the Participle II.
1) The leads from the armature can be continuously insulated
from….. ; 2) the vertical type of alternator applied for large waterwheel generator; 3) alternators with a revoking armature and a stationary field used in small sizes mostly for special purposes; 4) a machine
driven by a source of mechanical power; 5) the direction of an induced
e.m.f. …
V. State 5 questions to the text.
27
VI. Points for discussion:
1. The structure of the alternator.
2. The application of the alternator.
UNIT 13
I. Read the text.
THE INDUCTION MOTOR
An induction motor like any other motor consists of a stationary
part, the stator, and a rotating part, the rotor. The rotor of an induction
motor is not connected electrically to the source of power supply. The
currents which circulate in the rotor conductors are the result of voltage
induced in the rotor in the magnetic field set up by the stator. The rotor
is fitted with a set of conductors in which currents flow. As these conductors lie in the magnetic field produced by the stator, a force is exerted on the conductors and the rotor begins to revolve.The operation of
the motor depends upon the production of a rotating magnetic field.
The speed at which the field of an induction motor turns is called the
synchronous speed of the field or of the motor.
The induction motor is the simplest of the various types of electric
motors and it has found more extensive application in industry than any
other type. It is made in two forms – the squirrel cage and the wound
rotor, the difference being in the construction of the rotor.
The stator of the induction motor has practically the same slot and
winding arrangement as the alternator and has the coils arranged to
form a definite number of poles, the number of poles being a determining factor in connection with the speed at which the motor will operate.
The rotor construction, however, is entirely different.
The squirrel-cage rotor is a simpler form and has been used in
many machines.
Instead of coils the winding consists of heavy copper bars.
The wound-rotor type has a winding made up of well-insulated
coils, mounted in groups whose end connections are brought out to fill
in rings. The purpose of this winding is to provide for variation in the
amount of resistance included in the rotor circuit.
Provision for ventilation is made by leaving passageways through the
core and frame, through which air is forced by fan vanes mounted on the
rotor. In main cases the motors now built in as an integral part of the machine it is to drive.
28
There being no electrical connection between the rotor circuits of
the induction motor and the stator circuits, or supply line, the currents
which flow in the rotor bars or windings correspond to the induced
voltages, the action being similar to that of a transformer with a movable secondary. With but a single-phase winding on the stator, however,
the torques produced in the two halves of the rotor would be in apposition, and the motor would not start. With more than one set of windings
two for a two-phase motor, three for a three-phase motor a resultant
field is produced which has the effect of cutting across the rotor conductors and induces voltages in them. This field is considered to be revolving at uniform speed.
The term „revolving field" should not be taken to mean actual revolution of flux lines. The magnetic field from the coils of each phase
varies in strength with changes in current value but does not move
around the stator. The revolutions are those of the resultant of the three,
or two, phases, as the case may be. A motor with a single-phase winding is not self-starting but must be provided with an auxiliary device of
some kind to enable the motor to develop a starting torque. The effect
of the revolving field is the same as would result from actual revolution
of a stator having direct-current poles. As voltages have been induced
in the bars or windings of the rotor, currents start flowing as a result of
these voltages, and a torque is produced which brings the motor up to
speed.
II. Find in the text the English equivalents for the word combinations given below:
1) асинхронный двигатель; 2) неподвижная часть; 3)
вращающаяся часть; 4) проводник; 5) одновременная скорость; 6)
широкое применение; 7) паз; 8) механизм обмотки; 9)
трансформатор; 10) вращающий момент.
III. Complete the following sentences according to the contents of
the text.
1. The Induction Motor is …….. of electric motors and is more extensively applied in industry than any other type.
2. The purpose of this winding is …….. for variation in the amount
of resistance included in the rotor circuit.
3. The effect of …. is the same as would result from actual revolution of a stator having direct-current poles.
29
IV. Answer the following questions:
1. What parts does the induction motor consist of?
2. What are the names of its rotating and stationary parts?
3. What does the motor operation depend on?
4. How can the difference between stator and rotor construction be
explained?
5. What does the term «revolving field» mean?
V. Translate the sentences from the text paying attention to the
Nominative Absolute Participle Constructions:
1. The induction motor is made in two forms – the squirrel cage and
the wound rotor, the difference being in the construction of the rotor.
2. The stator of the induction motor has practically the same slot
and winding arrangement as the alternator and has the coils arranged to
form a definite number of poles, the number of poles being a determining factor in connection with the speed at which the motor will operate.
3. There being no electrical connection between the rotor circuits
of the induction motor and the stator circuits, or supply line, the currents which flow in the rotor bars or windings correspond to the induced voltages, the action being similar to that of a transformer with a
movable secondary.
VI. Discuss the following points:
1) The construction of an induction motor;
2) Induction motor operation principle.
UNIT 14
I. Read the text.
TYPES OF INDUCTION MOTORS
TEXT 1
SINGLE-PHASE MOTOR
The single-phase induction motor differs from poly-phase type principally in the character of its magnetic field, as an ordinary single-phase
winding will not produce a rotating field, but a field that is oscillating, and
the induced currents and poles produced in the rotor by this field will tend
to produce equal torque in opposite directions, therefore, the rotor cannot
start to revolve. However, if the rotor can in some manner be made to ro30
tate at a speed corresponding to the frequency of the current in the stator
windings then the reaction of the stator and rotor flux is such as to produce
a torque that will keep the rotor revolving.
In practice the starting of single-phase induction motors is accomplished by two general methods applicable to small-sized motors only.
First: the split-phase method, in which an auxiliary stator winding is
provided for starting purposes only, this winding being displaced from
the main stator winding by 90 electrical degrees. It has a higher inductance than the main stator winding, thus causing the currant in it to lag far
enough behind the current in the main winding to produce a shifting or
rotating field during the starting period, which exerts a starting torque on
the rotor sufficient to cause rotation.
When nearly normal speed has been reached the auxiliary winding
is out of circuit by a switch and clutch in the motor, which operates automatically by centrifugal force, and the rotor continues to run as a single-phase motor. The starting torque of such motions being limited,
they are frequently constructed with the rotor arranged to revolve freely
on the shaft at starting until nearly normal speed is reached, at which
time the load is pitched up by the automatic action of a centrifugal
clutch.
Second: an auxiliary winding may be connected to the singlephase line through an external inductance and a switch (for disconnecting the auxiliary winding from the circuit after the motor has reached
normal speed), the introduction of the inductance in the auxiliary winding splitting the phase as before.
TEXT 2
THREE – PHASE INDUCTION MOTOR
The three-phase induction motor is the most commonly used type.
It has been widely used in recent years. Normally an induction motor
consists of a cylindrical core (the stator) which carries the primary coils
in slots on its inner periphery. The primary coils are arranged for a
three-phase supply and serve to produce a revolving magnetic field.
The stator encircles a cylindrical rotor carrying the secondary winding
in slots on its outer periphery.
The rotor winding may be one of two types: squirrel-cage and slipring for wound-rotor. In a squirrel-cage machine the rotor winding
forms a complete closed circuit in itself. The rotor winding of a slip31
ring machine is completed when the slip rings are connected either directly together or through some resistance external to the machine. The
rotor shaft is coupled to the shaft of the driven mechanism.
The rotor is stationary at some instant of time. The revolving magnetic field of the stator winding cuts across the stationary rotor winding
at synchronous speed and induces an e.m.f. in it. The e.m.f. will give
rise to a current which sets up a magnetic field. The rotor starts rotating.
It is the interaction between the rotor current and the revolving
magnetic field that has created torque and has caused the rotor to rotate
in the same direction as the revolving magnetic field. Tine speed of the
rotor is 98–95 per cent of the synchronous speed of the revolving magnetic field of the stator. Hence another name for this type of motor is
the asynchronous motor. As a matter of fact, the speed of the rotor cannot be equal to synchronous speed. If it were equal to the latter, the revolving magnetic field would not be able to cut the secondary conductors and there would not be any current induced in the secondary winding and no interaction between the revolving field and the rotor current,
and the motor would not run.
II. Translate the sentences, paying attention to the translation
of the word “one”.
1. One should distinguish between single-phase and three-phase
induction motors.
2. The new device is better the old one.
3. The three-phase induction motor type is the most commonly
used one.
4. The rotor winding may be one of two types.
5. As a matter of fact the speed of the rotor cannot be equal to synchronous one.
III. Translate the sentences from the text paying attention to
the Nominative Absolute Participle Constructions:
1. In the split-phase method an auxiliary stator winding is provided
for starting purposes only, this winding being displaced from the main
stator winding by 90 electrical degrees.
2. The starting torque of such motions being limited, they are frequently constructed with the rotor arranged to revolve freely on the
shaft at starting until nearly normal speed is reached.
32
3. An auxiliary winding may be connected to the single-phase line
through an external inductance and a switch, the introduction of the
inductance in the auxiliary winding splitting the phase as before.
IV. Answer the following questions:
1. What way does the single-phase motor differ from the threephase one?
2. What is the starting of single-phase induction motors accomplished by?
3. How can an auxiliary winding be connected to the single-phase
line?
4. What parts does an induction motor consist of?
5. What are the two types of the rotor winding?
V. Work out the plan of the text.
VI. State 5 questions to the text.
UNIT 15
I. Read the text.
TRANSFORMERS
One of the great advantages in the use of the alternating current is
the ease with which the voltage may be changed by means of a relatively simple device known as a transformer. Although there are many different types of transformers and a great variety of different applications,
the principles of action are the same in each case.
The transformer is a device for changing the electric current from
one voltage to another. It is used for increasing or decreasing voltage.
So the function of a transformer is to change voltage and current of an
alternating system to meet requirements of the equipment used. It is
known to be simple in elementary principle, and in construction that is
it involves no moving parts. Transformers change voltage through electromagnetic induction.
The principle parts of a transformer are: an iron core and, usually,
two coils of insulated windings. One of them is called primary, another
is called the secondary. The primary coil is connected to the source of
power. The secondary coil is connected to the load. Thus, the primary is
the coil to which power is supplied. The secondary is the coil from
which power is taken. In scientific terms to produce an alternating
magnetic flux in the iron core an alternating current must be passed
33
through the primary coil. This flux is considered to induce electromotive force in both primary and secondary coils. The secondary coil is
open-circuited. Current flows in the secondary coil when the latter is
connected to the external circuit or load. The flow of current in the secondary coil tends to reduce the flux in the core. Transformers are placed
inside a steel tank usually with oil to improve the insulation and also to
cool the device.
II. Guess the meaning of the following international words:
1) transformer; 2) type; 3) principle; 4) electric; 5) function; 6)
elementary; 7) construction; 8) induction.
III. Translate into Russian the words and expressions from the
text:
1) advantage; 2) voltage; 3) relatively simple; 4) application; 5) increase; 6) to decrease; 7) to meet requirements; 8) moving parts; 9) iron
core; 10) insulated windings; 11) load; 12) electromotive force; 13) to
induce.
IV. Give the English equivalents to the words below:
1) переменный ток; 2) прибор; 3) принцип работы (действия); 4)
электромагнитная индукция; 5) катушка; 6) первичная (вторичная)
обмотка; 7) источник питания; 8) магнитный поток; 9) стальной
контейнер; 10) остужать.
V. State questions to the underlined words:
1. Voltage may be changed by a transformer. (General Question).
2. Transformers change voltage through electromagnetic induction. (How …).
3. Transformer is used for increasing or decreasing voltage.
4. The primary winding is connected to the source of power.
(…or…).
5. Transformers are placed inside a steel tank. (Question-tag).
VI. Answer the questions:
1. What kind of device is a transformer?
2. What are the functions of a transformer?
3. What are the principle parts of a transformer?
4. What is the primary coil connected to?
5. What is the secondary coil connected to?
34
6. What are the principles of action of a transformer?
7. Where are transformers usually placed?
VII. Topics for discussion:
1) Transformer as an electric device;
2) Main parts and principles of a transformer action.
UNIT 16
I. Read the text.
TYPES OF TRANSFORMERS
There are different types of transformers. By the purpose they are
classified into step-up transformers and step-down transformers. In a
step-up transformer the output voltage is larger than the input voltage,
because the number of turns on the secondary winding is greater than
that of the primary. In a step-down transformer the output voltage is
less than input voltage as the number of turns on the secondary is fewer
than that on the primary.
By the construction transformers are classified into core-type and
shell-type transformers. In the core-type transformers the primary and
the secondary coils surround the core. In the shell type transformers the
iron core surrounds the coils. Electrically they are equivalent. The difference is in the mechanical construction.
By the methods of cooling transformers are classified into aircooled, oilcooled and water-cooled transformers.
By the number of phases transformers are divided into singlephase
and polyphase transformers.
Instrument transformers are of two types, current and potential.
A current transformer is an instrument transformer used for the
transformation of a current at a high voltage into proportionate current
at a low voltage. Current transformers are used in conjunction with a.-c.
meters or instruments where the current to be measured must be of low
value. They are also used where high-voltage current has to be metered.
A voltage transformer, which is also called a potential transformer, may
be defined as an instrument transformer for the transformation of voltage from one value to another. This transformer is usually of a stepdown type because it is used when a meter is installed for use on a
high-voltage system.
35
Transformers operate equally well to increase the voltage and to
reduce it. The above process needs a negligible quantity of power.
Transformers are widely used in our everyday life. All radiosets and all
television sets are known to use two or more kinds of transformers.
These are familiar examples showing that electronic equipment cannot
do without transformers.
II. Guess the meaning of the following international words:
1) to classify; 2) method; 3) phase; 4) instrument; 5) system; 6)
process; 7) radio; 8) television.
III. Give the English equivalents for the words below:
1) цель; 2) повышающий / понижающий трансформатор; 3)
выходящее / входящее напряжение; 4) число витков; 5) механическое
устройство; 6) монофазные / полифазные трансформаторы; 7)
высокое / низкое напряжение; 8) определять; 9) работать; 10)
незначительное количество.
IV. Translate into Russian the words and expression from the
text:
1) core-type / shell-type transformers; 2) air-cooled / oil-cooled /
water-cooled transformers; 3) current / potential transformers; 4) in
conjunction with smith; 5) to reduce; 6) electronic equipment.
V. Complete the sentences using the text:
1. By the purpose transformers are …
2. By the construction transformers are …
3. By the methods of cooling transformers are …
4. By the number of phases transformers are …
5. Transformers operate equally well…
6. Process of voltage changing needs…
7. Familiar examples of transformer applications are …
VI. Answer the questions:
1. What voltage is larger in a step-up transformer and why?
2. What voltage is less in a step-down transformer and why?
3. What is the construction of a core-type transformer?
4. What is the construction of a shell-type transformer?
5. What are the two types of instrument transformers?
6. What are current transformers used for?
7. What are potential transformers used for?
36
VII. Topics for discussion:
1) Types of transformers;
2) Use of transformers in everyday life.
UNIT 17
I. Read the text.
Measurements of Electric Values
The measurement of any physical quantity applies a determination
of its magnitude in terms of some appropriate unit. In the case of simple
fundamental quantities such as length, mass, or time, the units themselves are simple.
Electrical and magnetic quantities are, however, much less simple
than length, mass, or time and cannot be measured directly by comparison with a material stand. The units in which these quantities are expressed have to be defined in terms of their observable affects obtained in
experimental work, e.g. the weight of silver deposited in one second by a
current when it is passed through a solution of silver nitrate is a measure
of the magnitude of this current.
Electrical measurements can be classified broadly as neither absolute measurements, nor secondary measurements, but the first class of
such measurements is rarely undertaken.
II. Guess the meaning of the following international words:
1) physical; 2) system; 3) fundamental; 4) material; 5) experimental; 6) absolute; 7) class.
III. Give the English equivalents to the words below:
1) измерение; 2) определение; 3) соответствующая единица; 4)
быть соответствующим; 5) сравнение; 6) достигать; 7) серебро; 8)
широко; 9) заботиться; 10) длина.
IV. Translate into Russian the words and expression from the
text:
1) magnitude; 2) electrical and magnetic quantities; 3) to define; 4)
observable affects; 5) to deposit; 6) secondary measurements; 7) to undertake.
V. Insert the words:
37
1. Magnitude of any … (физическая величина) must be determined in terms of some appropriate … (единица).
2. … (единицы) are simple for simple … (основных) quantities.
3. … (электрические) and (магнитные) quantities cannot be
measured simply.
4. This units must be … (определены) in terms of their …
(наблюдаемые) effects obtained in… (экспериментальная работа).
5. Absolute … (измерения) are … (редко) undertaken.
VI. Answer the questions:
1. What do we need to measure any physical quantity?
2. What simple units for measuring of simple fundamental quantities
do you know?
3. Can electrical and magnetic quantities be measured directly by
compare son with a material stand?
4. How can we get units for defining electrical and magnetic
quantities?
5. What types of measurement do you know?
VII. State questions to the underlined words:
1. Before we can measure, we must decide upon a system of units.
2. Electric and magnetic quantities are much less simple than fundamental quantities.
3. These quantities cannot be measured directly by comparison
with a mate rial stand.
4. Electrical measurements can be classified as neither absolute,
nor seconddary measurements. (Question-tag).
VIII. Topics for discussion:
1. Measurement of any physical quantity.
2. Measurement of electric and magnetic quantities.
UNIT 18
I. Read the text.
MAIN TYPES OF AMMETERS AND VOLTMETERS
Ammeters and voltmeters are made to operate on the same principle. The two principle kinds are the moving coil and moving iron types.
The electro-magnetic effect of the current is the one chiefly made
use of for measuring purposes. Moving iron instruments employ this
38
effect. The moving-iron instrument consists of a fixed coil of wire carrying the current which magnetizes a small piece of soft iron mounted
on the instrument spindle. In construction there are two varieties: the
repulsion type having two pieces of iron; and the attraction type having
only one.
In the attraction type of the instrument the bobbin carrying the wire
is oblong instead of circular, and has only a narrow slot-shaped opening
in the center. A thin flat piece of iron, which is mounted on the instrument spindle, is sucked into this opening by magnetic attraction when
the current flows. Either gravity or spring control can be used on movingiron instruments and damping is usually by means of an air-dash-pot.
A moving-coil instrument may be compared to a miniature directcurrent motor in which the armature never moves more than about a quarter of a revolution.
When a current flows through the coil of a moving-coil type ammeter, it becomes a magnet, one face being of north, and the other of south
polarity. These poles are attracted by the poles of opposite polarity of the
permanent magnet, and the coil tends to turn until its axis is parallel with
the line joining the pole pieces of the permanent magnet. This movement
is proportional to the current flowing and is opposed by the control
springs. A pointer fixed to the coils moves over a graduated scale and
indicates the current flowing in amperes. The scale of this type of instrument is evenly divided, but the positive terminal must be connected to the
positive terminal of the supply, or the instrument tends to read backward.
Such an instrument is only suitable for d.c. circuits.
Moving-coil instruments are more accurate and sensitive, but more
expensive than those of moving-iron types.
II. Give the English equivalents for the following words and
word-combinations:
1) электромагнитный тип; 2) магнитно-электрический тип; 3)
ось; 4) репульсионный тип; 5) притягивающий тип; 6)
продолговатый; 7) устанавливать; 8) втягивать; 9) воздушный
успокоитель.
III. Translate into Russian:
1) purpose; 2) employ; 3) slot-shaped; 4) magnetic attraction; 5) damp;
6) revolution; 7) pole; 8) axis; 9) pointer; 10) graduated scale.
IV. Answer the questions:
1. What are the two principle kinds of ammeters and voltmeters?
39
2. What is the construction of a moving iron instrument?
3. What are the two types of moving iron instrument?
4. How does a moving coil instrument work?
5. What instrument is suitable only for d.c.?
6. What instruments are more expensive and sensitive: moving
coil or moving iron instruments?
V. State questions to the underlined words:
1. Ammeters and voltmeters are made to operate on the same
principle.
2. Moving-iron instruments employ this effect. (General Question).
3. Moving iron instrument consists of a coil, small piece of iron
and a spindle (what … of).
4. The repulsion type instrument has two pieces of iron. (…or…).
5. A pointer moves over a graduated scale. (Question-tag).
VI. Insert the words:
1. In the attraction type of the … (механизмы) the bobbing is …
(продолговатый) instead of … (круглый).
2. A small piece of … (железо) is mounted on the instrument …
(ось).
3. … (Амортизация) is usually by means of an … (воздушный
успокоитель).
4. The … (якорь) never moves more than about a quarter of a …
(полный оборот) in a miniature d.c. motor.
5. … (катушечный) movement is proportional to … (движение
тока) and is opposed by the … (пружинный механизм).
6. … (Стрелка) indicates the … (ток) flowing in … (ампер).
7. The … (положительный) terminal must be connected to the …
(положительный) terminal of the … (питание), or the … (механизм)
tends to read … (наоборот).
VII. Topics for discussion:
1. Moving iron instruments.
2. Moving coil instruments.
UNIT 19
40
I. Read the text.
ELECTRICAL MEASURING INSTRUMENTS AND UNITS
Any instrument which measures electrical values is called a meter.
An ammeter measures the current in amperes. The abbreviation for the
ampere is amp. A voltmeter measures the voltage and the potential difference in volts.
The current in a conductor is determined by two things – the voltage across the conductor and the resistance of the conductor. The unit
by which resistance is measured is called the ohm. The resistance in
practice is measured with the ohm-meter. A wattmeter measures electrical power in watts. Very delicate ammeters are often used for measuring very small currents. A meter whose scale is calibrated to read a
thousandth of an ampere is called a micro ammeter or galvanometer.
Whenever an ammeter or voltmeter is connected to a circuit to
measure electric current or potential difference, the ammeter must be
connected in series and the voltmeter in parallel. To prevent a change in
the electric current when making such an insertion, all ammeters must
have a low resistance. Hence, most ammeters have a low resistance
wire, called a shunt, connected across the armature coil.
A voltmeter, on the other hand, is connected across that part of the
circuit for which a measurement of the potential difference is required. In
order that the connection of the voltmeter to the circuit does not change
tire electric current in the circuit, the voltmeter must have high resistance.
If the armature coil does not have large resistance of its own, additional
resistance is added in series.
The heating effect, electrostatic effect, magnetic and electromagnetic effects of electric current are used in order to produce the defleting torque. The resulting measuring instruments are called: (a) hot
wire, (b) electrostatic, (c) moving iron, (d) moving coil, and (e) induction. Various types are used with both d.c. and a.c., but the permanentmagnet moving coil instrument are used only with d.c., and the induction type instruments are limited to a.c.
All, except the electrostatic type instruments, are current measuring
devices, fundamentally ammeters. Consequently, most voltmeters are
ammeters designed also to measure small values of current directly
proportional to voltage to be measured.
II. Guess the meaning of international words:
41
1) instrument; 2) fact; 3) abbreviation; 4) voltmeter; 5) ohm; 6)
ohm-meter; 7) wattmeter; 8) galvanometer; 9) shunt.
III. Give the Russian equivalents to the words below:
1) resistance; 2) to offer; 3) scale; 4) to prevent; 5) armature; 6)
connection; 7) heating effect.
IV. Give the English equivalents to the words and wordcombinations:
1) амперметр; 2) разница потенциалов; 3) определять; 4)
чувствительный; 5) градуировать; 6) вставка; 7) катушка; 8)
переменный ток (второй термин).
V. Answer the questions:
1. How are electrical values measuring instruments called?
2. How must the ammeter and the voltmeter be connected?
3. What resistance must the ammeter and the voltmeter have?
4. What resulting measuring instruments do you know?
5. What types of instruments are used with both d.c. and a.c.?
6. What instruments are used only with d.c. and limited to a.c.?
VI. Make up sentences corresponding to the contents of the
text:
1. A meter
the resistance
2. An ammeter
very small currents
3. An ohmmeter
measures electrical values
4. A voltmeter
the current
5. A galvanometer
the potential difference in
volts
1. The voltage
in ohms
2. The current
is meas- in volts
3. The resistance
ured
in amperes
VII. Describe different types of measuring instruments and
units, using the table in Task V.
42
SUPPLEMENTARY TEXTS
Part I
HISTORY OF ELECTRICITY:
OUTSTANDING SCIENTISTS AND DISCOVERIES
TEXT 1
GEORGE SYMON OHM
GEORGE SYMON OHM (1784–1854) is a famous German physicist. In 1805 he entered the Erlangen University. Though he did not
graduate from this University, he managed to write and defend a thesis
in 1811. Later, he was a teacher at the gymnasiums of Gottstadt and
Wamburg. Beginning from 1833 he became professor at the Polytechnical School in Nuremberg, and since 1849 – at the München University.
He is the most famous for establishment of the general law of the
electric circuit, stating the relation between resistance, electromotive
force, and strength of the current in the electric circuit. The law was
discovered experimentally and first formulated in 1826. Further investigations made use of this law. The unit of resistance was named after
Ohm at the International Congress of Electricians in1881.
43
TEXT 2
OHM'S LAW
One of Ohm's major contributions was the establishment of a definite relationship between voltage, resistance, and current in a closed
circuit. A circuit consists of a voltage source and a complete path for
current. Ohm stated this relationship as follows:
Current is directly proportional to voltage and inversely proportional to resistance.
As a formula, it appeals like this:
Voltage (in volts)
Current (in amperes)
Resistance (in ohms)
This formula is commonly known as Ohm's Law.
About 1817 Ohm discovered that a simple correlation exists between resistance, current and voltage. That is: the current that flows in
the circuit is directly proportional to the voltage and inversely proportional to the resistance. A current is measured in amperes, a voltage, or
potential difference is measured in volts. A resistance is measured in
ohms.
TEXT 3
FARADAY'S LAW
MICHEL FARADAY was a great British physicist, the founder of
the theory of electron field, a member of the London Royal Society. He
was born in London in the family of a smith. Spending a few years in
the primary school, he continued his studies all by himself, reading
books and listening public lectures. Greatly impressed by lectures of a
well-known English chemist H. Davy, he sent him a letter asking for a
job at the Royal Institute. In 1813 Davy gave him a job of a laboratory
assistant. Thanks to the brilliant talent of an experimenter, Faraday
soon made himself known. All his future scientific work was carried
out in the Royal Institute laboratories.
Faraday's law is formulated as follows: (a) the induced E.M.F. in a
conductor is proportional to the rate at which the conductor cuts the
magnetic lines of force. (b) The induced E.M.F. in a circuit is proportional to the rate of change of the number of lines of force threading the circuit.
44
TEXT 4
EMIL LENZ. Lenz's Law
EMIL LENZ was born on the 12 of February 1804 and died on the 29
of January 1865 in Derpt. He became a prominent Russian physicist, an
Academician.
At the age of 16 he entered the Derpt University. In 1823, when being
a student, he joined a 3 year round-the-world trip on board of the ship “Enterprise” as a physicist. The chief of the expedition was Kotzebu, a famous
Russian seaman and explorer. In 1828 Lenz was elected adjunct-professor
of the St.Petersburg Academy of Sciences for his outstanding investigations in geophysics.
In the 30 s of the 19th century, Lenz reorganized a physical laboratory of the Academy of Sciences where he began his famous studies on
electricity and magnetism. He discovered the law of the electric current
emitting heat in conductors. This law laid the foundation for the discovery of the Law of conservation and conversion of energy.
The direction of the induced current is such that its effect opposes
the change producing it. The right-hand rule enables one to predict the
direction of the induced current, and may be shown to conform with
Lenz's law.
The induction coil, the dynamo, the transformer, and the telephone
are practical application of electromagnetic induction.
TEXT 5
KIRCHHOFF'S LAWS
GUSTAV ROBERT KIRCHHOFF (1824–1887) is a famous German scientist. He graduated from the Königsberg University in 1846.
Since 1850 he had been an extraordinary professor of physics at the
University of Breslau, and since 1854 – an ordinary professor of experimental and theoretical physics in Heidelberg University, in 1875 he
became the chief of the Chair of mathematical physics in Berlin University.
His first works (1845–49) were dedicated to studies of the electric
current in various kinds of conductors, series and parallel circuits, and
to distribution of electricity in the conductors. Together with Bunsen,
he was the author of spectral analysis.
G. R. Kirchhoff expanded and clarified Ohm's law with two statements which may be paraphrased as follows:
45
1. The current entering a point is equivalent to the current leaving
the point.
2. The sum of the voltage drops around a closed loop is equal to
the applied voltage.
Kirchhoff intended his statements to apply to all circuits.
The two main principles of circuit analysis are:
(1) Kirchhoff's Current Law. The sum of the currents directed
away from the junction is equal to the sum of the currents directed toward the junction.
(2) Kirchhoff's E. M. F. Law. The sum of the voltage drops around
any closed loop of a network equals the sum of the voltage rises around
this loop.
TEXT 6
A GREAT INVENTION OF A RUSSIAN SCIENTIST
Radio occupies one of the leading places among the greatest
achievements of modern engineering. It was invented by Professor A.
S. Popov, a talented Russian scientist, who demonstrated the first radioreceiving set in the world on May 7, 1895.
And it is on this day that the anniversary of the birth of the radio is
marked.
By his invention Popov made a priceless contribution to the development of world science.
A. S. Popov was born in the Urals, on March 16, 1859. For some
years he had been studying at the seminary in Perm, and then went to
the University of St. Petersburg. In his student days he worked as a mechanic at one of the first electric power – plants in St. Petersburg which
was producing electric lights for Nevsky Prospekt.
After graduating from the University in 1882, A. S. Popov remained there as a post-graduate at the Physics Department. A year later
he became a lecturer in Physics and Electrical Engineering in Kronstadt. By this time he had already gained recognition among specialists
as an authority in this field.
After Hertz had published his experiments proving the existence of
electromagnetic waves, A. S. Popov thought of the possibility of using
Hertz waves for transmitting signals over a distance. Thus the first
wireless (radio) receiving set was created. Then Popov developed his
device and on March 24, 1896 he demonstrated the transmission and
46
reception of a radiogram consisting of two words: Heinrich Hertz. On
that day the radio-telegraphy was converted from an abstract theoretical
problem into a real fact.
A. S. Popov did not live to see the great progress of his invention.
In the first decrees the Soviet Government planned the development of
an industry for producing radio equipment, the construction of radio
stations. All this was put into practice on a scale which had greatly surpassed plans for the radiofication of the country.
Popov’s invention laid the foundation for further inventions and
improvements in the field of radio engineering. Since that time scientists all over the world have been developing the modern systems of
radiotelegraphy, broadcasting, television, radiolocation, radionavigation and other branches of radio-electronics.
TEXT 7
CHARLES COULOMB
CHARLES COULOMB (1736–1806), a member of the Paris
Academy of Sciences, an outstanding French physicist in the period
from 1785 to 1789 stated the law of electrostatic and magnetic interaction. His work in this field laid foundation for the future theoretic investigations in the electrostatics and magnetstatics.
Coulomb’s law is one of the principal laws of electrostatics. It established a relationship between the force of interaction of two static
electric charges, their quantities, and the distance between them. According to Coulomb’s law the absolute value of the force of repulsion
of two like charges or the force of attraction between two unlike charges el and e2, which size is much less than the distance between them, is
inversely proportional to the square of the distance between them. He
also stated the laws of rotation, dry friction, laws of interaction between
magnetic poles. All these laws were named in honor of Ch. Coulomb.
TEXT 8
ANDRE MARIE AMPERE
ANDRE MARIE AMPERE (1775–1836) was an outstanding physicist and mathematician of French origin. He is one of the founders of
modern electrodynamics. He was born in aristocratic family in Lyon.
By the age of 14 he has read all the 20 volumes of “The Encyclopedia”
by Diderot and D’Alambert. His scientific interests were very diverse.
47
In 1801 Ampere headed the Chair of Physics in Burge, in 1805 he
became a teacher of physics at the Polytechnical School in Paris. Since
1814 he was elected Member of The Institute, which later transformed
into the French Academy of Sciences. After 1824 he occupied the post
of professor at the Ecole Normale in Paris.
Ampere’s studies on the effects of the electric current flow on the
magnetic needle were his greatest contribution to physics. In 1820 in
the report to the Paris Academy, he made the announcement of the socalled “Ampere Rule”, which is since used to define the deflection of
the needle affected by the electric current. This led him to the discovery
of interactions between electric currents. The fundamental laws of this
interaction got his name.
TEXT 9
JAMES CLERC MAXWELL
JAMES CLERC MAXWELL, a British physicist, was born in
1831. In 1847–50, he studied at the Edinborough University and later in
Cambridge. On graduating from the Cambridge University, he was offered a post of a teacher there. In 1860 he headed the Chair of Physics
in the King’s College in London. In 1871 he went back to Cambridge
where he headed a newly-organized laboratory named in honor of H.
Cavendish.
His scientific interests lay in the field of electro-magnetism, molecular physics, optics, mechanics, and other. Maxwell published his
first scientific paper when he was only 15. He founded the theory of
electro-magnetic field, the electromagnetic theory of light. He is credited with the studies of the Saturnus rings. He described all known facts
of electrodynamics by means of system of equations, known as Maxwell’s equations of electrodynamics.
TEXT 10
WORLD BRIGHTEST ELECTRIC LAMPS
The world’s brightest lamp, able to light an area of 250 acres was
produced by the Moscow Electric Lamp Works not long ago. It was
designed by Victor Vasiliyev.
The lamp, which is named after the bright star Sirius is a three –
phase 200 – kilowatt discharge lamp. The working part of the lamp is a
double walled quartz tube which is 10 inches in diameter and about 40
48
inches long. The lamp is started by a special high voltage flash and
cooled by water circulating between the inner and outer tubes.
One of these lamps is now installed nearly 200 feet above ground
level in the engineering pavilion of the Industrial Exhibition Moscow.
The Sirius lamp can be particularly useful on big construction sites.
TEXT 11
EARLY HISTORY OF ELECTRICITY
History shows us that at least 2,500 years ago the Greeks were already familiar with the strange force (as it seemed to them) which is
known today as electricity. Generally speaking, three phenomena made
up all of man's knowledge of electrical effects. The first phenomenon
was the familiar lightning flash – a dangerous power which could both
kill people and burn or destroy their houses. The second manifestation
of electricity was more or less familiar to people: a strange yellow stone
which looked like glass was sometimes found in the earth. On being
rubbed, that strange yellow stone – amber – obtained the ability of attracting light objects of a small size. The third phenomenon was connected with the so-called electric fish which possessed the property of
giving more or less strong electric shocks which could be obtained by a
person coming into contact with it.
Nobody knew that the above phenomena were due to electricity.
People could neither understand their observations nor find any practical
applications for them. All of man's knowledge in the field of electricity
has been obtained during the last 370 years. It took a long time before
scientists learned how to make use of electricity. Most of the electrically
operated devices, such as the electric lamp, the refrigerator, the tram, the
lift, the radio are less than one hundred years old. In spite of their having
been employed for such a short period of time, they play a most important part in man's everyday life all over the world.
Famous names are connected with the scientific research on electricity, its history. As early as about 600 B. C. the Greek philosopher Phales
discovered that when amber was rubbed, it attracted and held minute
light objects. However, he could not know that amber was charged with
electricity owing to the process of rubbing. Then Gilbert, the English
physicist, began the first systematic scientific research on electrical phenomena. He discovered that various substances possessed the property
similar to that of amber: they generated electricity when they were
49
rubbed. He gave the name "electricity" to the phenomenon he was studying. He got this word from the Greek "electrum" meaning "amber".
Many learned men of Europe began to use the new word "electricity" in their conversation as they were engaged in research of their own.
Scientists of Russia, France and Italy made their contribution as well as
the Englishmen and the Germans.
TEXT 12
FROM THE HISTORY OF ELECTRICITY
There are two types of electricity, namely, electricity at rest or in a
static condition and electricity in motion, that is, the electric current.
Both of them are made up of electric charges, static charges being at
rest, while electric current flows and does work. Thus, they differ in
their ability to serve mankind as well as in their behaviour.
Static electricity was the only electrical phenomenon to be observed by man for a long time. At least 2,500 years ago the Greeks
knew how to get electricity by rubbing substances. However, the electricity to be obtained by rubbing objects cannot be used to light lamps,
to boil water, to run electric trains, and so on. It is usually very high in
voltage and difficult to control, besides it discharges in no time.
As early as 1753, Franklin made an important contribution to the
science of electricity. He was the first to prove that unlike charges are
produced due to rubbing dissimilar objects. To show that the charges
are unlike and opposite, he decided to call the charge on the rubbernegative and that on the glass-positive.
In this connection one might remember the Russian academician V.
V. Petrov. He was the first to carry on experiments and observations on
the electrification of metals by rubbing them one against another. As a
result he was the first scientist in the world who solved that problem.
Volta’s discovery of electric current developed out of Galvani's
experiments with the frog. Galvani observed that the legs of a dead frog
jumped as a result of an electric charge. He tried his experiment several
times and every time he obtained the same result. He thought that electricity was generated within the leg itself.
Volta began to carry on similar experiments and soon found that
the electric source was not within the frog's leg but was the result of the
contact of both dissimilar metals used during his observations. However, to carry on such-experiments was not an easy thing to do. He spent
the next few years trying to invent a source of continuous current. To
50
increase the effect obtained with one pair of metals, Volta increased the
number of these pairs. Thus the voltaic pile consisted of a copper layer
and a layer of zinc placed one above another with a layer of flannel
moistened in salt water between them. A wire was connected to the first
disc of copper and to the last disc of zinc.
The year 1800 is a date to be remembered: for the first time in the
world's history a continuous current was generated.
Volta was born in Como, Italy, on February 18, 1745. For some
years he was a teacher of physics in his home town. Later on he became
professor of natural sciences at the University of Pavia. After his famous discovery he traveled in many countries, among them France,
Germany and England. He was invited to Paris to deliver lectures on
the newly discovered chemical source of continuous current. In 1819 he
returned to Como where he spent the rest of his life. Volta died at the
age of 82.
TEXT 13
NATURE OF ELECTRICITY
The first recorded observation on electricity was made by the ancient Greek philosopher Phales. He stated that a piece of amber rubbed
with fur attracted light objects. But more than 22 centuries passed before the study of magnetism and of electrical phenomena began by Galileo and other scientists.
It was well known that not only amber, but many other substances
having been rubbed behave like amber i.e. can be electrified. It was discovered that any 2 dissimilar substances forced into contact and then
separated became electrified, or acquired electrical charges.
During the 19th century the idea of the nature of electricity was
completely revolutionized. The atom was regarded as the ultimate subdivision of matter. Today the atom is regarded as an electrical system.
In this electrical system there is a nucleus containing positively charged
particles called protons. The nucleus is surrounded by lighter negatively
charged units – electrons. So the most essential constituent of matter is
made up of electrically charged particles. Matter is neutral and produces no electrical effects when it has equal amounts of both charges.
But when the number of negative charge is unlike the number of
positive ones, matter will produce electrical effects. Having lost some
of its electrons, the atom has a positive charge: having an excess of
electrons – it has a negative charge.
51
TEXT 14
ATMOSPHERIC ELECTRICITY
Electricity plays such an important part in modern life that in order
to get it, men have been burning millions of tons of coal. Coal is burned
instead of its being mainly used as a source of valuable chemical substances which it contains. Therefore, finding new sources of electric
energy is a most important problem that scientists and engineers try to
solve.
Hundreds of millions of volts are required for a lightning spark
about one and a half kilometre long. However, this does not represent
very much energy because of the intervals between single thunderstorms. As for the power spent in producing lightning flashes all over
the world, it is only about 1/10,000 of the power got by mankind from
the sun, both in the form of light and that of heat. Thus, the source in
question may interest only the scientists of the future.
Atmospheric electricity is the earliest manifestation of electricity
known to man. However, nobody understood that phenomenon and its
properties until Benjamin Franklin made his kite experiment. On studying the Leyden jar (for long years the only known condenser), Franklin
began thinking that lightning was a strong spark of electricity. He began experimenting in order to draw electricity from the clouds to the
earth. The story about his famous kite is known all over the world.
On a stormy day Franklin and his son went into the country taking
with them some necessary things such as: a kite with a long string, a,
key and so on. The key was connected to the lower end of the string. "If
lightning is the same as electricity," Franklin thought, "then some of its
sparks must come down the kite string to the key." Soon the kite was
flying high among the clouds where lightning flashed. However, the
kite having been raised, some time passed before there was any proof of
its being electrified. Then the rain fell and wetted the string. The wet
string conducted the electricity from the clouds down the string to the
key. Franklin and his son both saw electric sparks which grew bigger
and stronger. Thus, it was proved that lightning is a discharge of electricity like that got from the batteries of Leyden jars.
Trying to develop a method of protecting buildings during thunderstorms, Franklin continued studying that problem and invented the
lightning conductor. He wrote necessary instructions for the installation
of his invention, the principle of his lightning conductor being in use
52
until now. Thus, protecting buildings from strokes of lightning was the first
discovery in the field of electricity employed for the good of mankind.
TEXT 15
MAGNETISM
In studying the electric current, the following relation between magnetism and the electric current can be observed; on the one hand magnetism is produced by the current and on the other hand the current is produced from magnetism.
Magnetism is mentioned in the oldest writings of man. Romans, for
example, knew that an object looking like a small dark stone had the
property of attracting iron. However, nobody knew who discovered
magnetism or where and when the discovery was made. Of course,
people could not help repeating the stories that they had heard from
their fathers who, in their turn, heard them from their own fathers and
so on.
One story tells us of a man called Magnus whose iron staff was
pulled to a stone and held there. He had great difficulty in pulling his
staff away. Magnus carried the stone away with him in order to demonstrate its attracting ability among his friends. This unfamiliar substance
was called Magnus after its discoverer, this name having come down to
us as "Magnet".
According to another story, a great mountain by the sea possessed so
much magnetism that all passing ships were destroyed because all their
iron parts fell out. They were pulled out because of the magnetic force of
that mountain.
The earliest practical application of magnetism was connected with
the use of a simple compass consisting of one small magnet pointing
north and south.
A great step forward in the scientific study of magnetism was made
by Gilbert, the well-known English physicist (1540–1603). He carried
out various important experiments on electricity and magnetism and
wrote a book where he put together all that was known about magnetism. He proved that the earth itself was a great magnet.
Reference must be made here to Galileo, the famous Italian astronomer, physicist and mathematician. He took great interest in Gilbert's
achievements and also studied the properties of magnetic materials. He
experimented with them trying to increase their attracting power.
53
At present, even a schoolboy is quite familiar with the fact that in
magnetic materials, such as iron and steel, the molecules themselves are
minute magnets, each of them having a north pole and a south pole.
TEXT 16
MAGNETIC EFFECT OF AN ELECTRIC CURRENT
The invention of the voltaic cell in 1800 gave electrical experimenters a source of a constant flow of current. Seven years later the
Danish scientist and experimenter Oersted, decided to establish the relation between a flow of current and a magnetic needle. It took him at
least 13 years more to find out that a compass needle is deflected when
brought near a wire through which the electric current flows. At last,
during a lecture he adjusted, by chance, the wire parallel to the needle.
Then, both he and his class saw that when the current was turned on,
the needle deflected almost at right angles towards the conductor. As
soon as the direction of the current was reversed, the direction the needle pointed in was reversed too.
Oersted also pointed out that provided the wire were adjusted below the needle, the deflection was reversed.
The above-mentioned phenomenon highly interested Ampere who
repeated the experiment and added a number of valuable observations
and statements. He began his research under the influence of Oersted's
discovery and carried it on throughout the rest of his life.
Everyone knows Ampere's rule thanks to which the direction of the
magnetic effect of the current can always be found. Ampere established
and proved that magnetic effects could be produced without any magnets
by means of electricity alone. He turned his attention to the behaviour of
the electric current in a single straight conductor and in a conductor that is
formed into a coil, i.e. a solenoid.
When a wire conducting a current is formed into a coil of several
turns, the amount of magnetism is greatly increased.
It is not difficult to understand that the greater the number of turns of
wire, the greater is the m.m.f. (that is the magnetomotive force) produced
within the coil by any constant amount of current flowing through it. In
addition, when doubling the current, we double the magnetism generated
in the coil.
A solenoid has two poles which attract and repel the poles of other
magnets. While suspended, it takes up a north and a south direction ex54
actly like the compass needle. A core of iron becomes strongly magnetized if placed within the solenoid while the current is flowing.
Part II
INTERESTING FACTS ON ELECTRICITY AND ELECTRONICS
TEXT 1
ELECTRICITY MAY BE DANGEROUS
Many people have had strong shocks from the electric wires in a
house. The wires seldom carry current at a higher voltage than 220, and
a person who touches a bare wire or terminal may suffer no harm if the
skin is dry. But if the hand is wet, he may be killed. Water is known to
be a good conductor of electricity and provides an easy path for the current from the wire to the body. One of the main wires carrying the current is connected to earth, and if a person touches the other one with a
wet hand, a heavy current will flow through his body to earth and so to
the others. The body forms part of an electric circuit.
When dealing with wires and fuses carrying an electric current, it is
best to wear rubber gloves. Rubber is a good insulator and will not let
the current pass to the skin. If no rubber gloves can be found in the
house, dry cloth gloves are better than nothing. Never touch a bare wire
with the wet hand, and never, in any situation, touch a water pipe and
an electric wire at the same time.
55
People use electricity in their homes every day but sometimes forget that it is a form of power and may be dangerous. At the other end of
the wire there are great generators driven by turbines turning at high
speed. One should remember that the power they generate is enormous.
It can burn and kill, but it will serve well if it is used wisely.
TEXT 2
POWER TRANSMISSION
They say that about a hundred years ago, power was never carried
far away from its source. Later on, the range of transmission was expanded to a few miles. And now, in a comparatively short period of
time, electrical engineering has achieved so much that it is quite possible, at will, to convert mechanical energy into electrical energy and
transmit the latter over hundreds of kilometres and more in any direction required. Then in a suitable locality the electric energy can be reconverted into mechanical energy whenever it is desirable. It is not difficult to understand that the above process has been made possible owing to generators, transformers and motors as well as to other necessary
electrical equipment. In this connection one cannot but mention the
growth of electric power generation in this country. The longest transmission line in pre-revolutionary Russia was that connecting the Klasson power-station with Moscow. It is said to have been 70 km long,
while the present Volgograd–Moscow high-tension transmission line is
over 1000 kilometres long. (The reader is asked to note that the English
terms "high-tension" and "high-voltage" are interchangeable.)
It goes without saying that as soon as the electric energy is produced at the power-station, it is to be transmitted over wires to the substation and then to the consumer. However, the longer the wire, the
greater is its resistance to current flow. On the other hand, the higher
the offered resistance, the greater are the heating losses in electric
wires. One can reduce these undesirable losses in two ways, namely,
one can reduce either the resistance or the current. It is easy for us to
see how we can reduce resistance: it is necessary to make use of a better conducting material and as thick wires as possible. However, such
wires are calculated to require too much material and, hence, they will
be too expensive. Can the current be reduced? Yes, it is quite possible
to reduce the current in the transmission system by employing transformers. In effect, the waste of useful energy has been greatly decreased due to high-voltage lines. It is well known that high voltage
56
means low current, low current in its turn results in reduced heating losses
in electrical wires. It is dangerous, however, to use power at very high
voltages for anything but transmission and distribution. For that reason, the
voltage is always reduced again before the power is made use of.
TEXT 3
HYDROELECTRIC POWER-STATION
Water power was used to drive machinery long before Polzunov
and James Watt harnessed steam to meet man's needs for useful power.
Modern hydroelectric power-stations use water power to turn the
machines which generate electricity. The water power may be obtained
from small dams in rivers or from enormous sources of water power
like those to be found in Russia. However, most of our electricity, that
is about 86 per cent, still comes from steam power-stations.
In some other countries, such as Norway, Sweden, and Switzerland, more electric energy is produced from water power than from
steam. They have been developing large hydroelectric power-stations
for the past forty years, or so, because they lack a sufficient fuel supply.
The tendency, nowadays, even for countries that have large coal resources is to utilize their water power in order to conserve their resources of coal. As a matter of fact, almost one half of the total electric
supply of the world comes from water power.
The locality of a hydroelectric power plant depends on natural
conditions. The hydroelectric power plant may be located either at the
dam or at a considerable distance below. That depends on the desirability of using the head supply at the dam itself or the desirability of getting a greater head. In the latter case, water is conducted through pipes
or open channels to a point farther downstream where the natural conditions make a greater head possible.
The design of machines for using water power greatly depends on
the nature of the available water supply. In some cases great quantities
of water can be taken from a large river with only a few feet head. In
other cases, instead of a few feet, we may have a head of several thousands of feet. In general, power may be developed from water by action
of its pressure, of its velocity, or by a combination of both.
A hydraulic turbine and a generator are the main equipment in a
hydroelectric power-station. Hydraulic turbines are the key machines
converting the energy of flowing water into mechanical energy. Such
turbines have the following principal parts: a runner composed of radial
57
blades mounted on a rotating shaft and a steel casing which houses the
runner. There are two types of water turbines, namely, the reaction turbine and the impulse turbine. The reaction turbine is the one for low
heads and a small flow. Modified forms of the above turbine are used for
medium heads up to 500–600 ft, the shaft being horizontal for the larger
heads. High heads, above 500 ft, employ the impulse type turbine.
Hydropower engineering is developing mainly by constructing
high capacity stations integrated into river systems known as cascades.
Such cascades are already in operation on the Dnieper, the Volga and
the Angara.
TEXT 4
NUCLEAR POWER PLANT
The heart of the nuclear power plant is the reactor which contains
the nuclear fuel. The fuel usually consists of hundreds of uranium pellets placed in long thin cartridges of stainless steel. The whole fuel cell
consists of hundreds of these cartridges. The fuel is situated in a reactor
vessel filled with a fluid. The fuel heats the fluid and the super-hot fluid
goes to a heat exchanger i.e. steam generator, where the hot fluid converts water to steam in the heat exchanger. The fluid is highly radioactive, but it should never come into contact with the water that is converted into steam. Then this steam operates steam turbines in exactly
the same way as in the coal or oil fired power-plant.
A nuclear reactor has several advantages over power-plants that
use coal or natural gas. The latter produce considerable air pollution,
releasing combusted gases into atmosphere, whereas a nuclear power
plant gives off almost no air pollutants. As to nuclear fuel, it is far
cleaner than any other fuel for operating a heat engine. Furthermore,
our reserves of coal, oil and gas are decreasing so nuclear fuel is to replace them.
TEXT 5
ELECTRONICS AND TECHNICAL PROGRESS
Large – scale application of electronic techniques is a trend of technical progress capable of revolutionizing many branches of industry.
Electronics as a science studies the properties of electrons, the laws
of their motion, the laws of the transformation of various kinds of energy through the media of electrons.
58
At present it is difficult to enumerate all branches of science and
technology which are based on electronic technique.
Electronics make it possible to raise industrial automation to a
higher level, to prepare conditions for the future technical retooling of
the national economy. It is expected to revolutionize the system of control over mechanisms and production processes. Electronics greatly
helps to conduct fundamental research in nuclear physics, in the study
of the nature of matter, and in realization of controlled thermonuclear
reactions.
An ever greater role is being played by electronics in the development of the chemical industry.
Electronics embrace many independent branches. The main among
them are vacuum, semiconductor, molecular and quantum electronics.
TEXT 6
PROTECTION AND CONTROL EQUIPMENT
In electrical systems for the generation, distribution and use of
electrical energy, considerable control equipment is necessary. It can be
divided into two classes:
a) equipment used at the generating and distributing end;
b) equipment used at the receiving end of the system.
c) secondary emission, in which electrons are driven from a material by the impact of electrons or other particles on its surface.
d) field emission, in which electrons are drawn from the surface of
a metal by the application of very powerful electric fields.
TEXT 7
THE NUCLEUS
The nucleus is composed of protons, neutrons, and other subatomic
particles. The proton is a relatively heavy positive particle. It has exactly the same quantity of electrical charge as the electron although its
sign (or value) is opposite. The proton weighs the same as approximately 1845 electrons, and the atom contains a like number of protons and
electrons. The neutron is so named because it is electrically neutral, that
is, it is neither positive nor negative. The neutron adds weight to the
atom and tends to prevent movement of the protons.
When the parts of the atom are examined, there can be found minute particles with positive and negative electrical charges. The basic
59
difference between lead and gold lies in the number of electrons and
protons in the atoms which compose these materials (metals).
The simplest atom consists of a nucleus which contains one proton,
which is orbited by a single electron. This is the hydrogen atom. One of
the more complex atoms is californium. This atom contains 98 photons
and 98 electrons with the electrons orbiting the nucleus in seven different
and distinct energy shells.
TEXT 8
WHAT IS AN ELECTRON?
What is an electron? It is a very small, indivisible, fundamental
particle – a major constituent of all matter. All electrons appear to be
identical and to have properties that do not change with time.
Two essential characteristics of the electron are its mass and its
charge. Qualitatively, an electron is a piece of matter that has weight
and is affected by gravity. Just as the mass of any object is defined, the
mass of the electron can be defined by applying a force and measuring
the resulting rate of change in the velocity of the electron, that is, the
rapidity with which its velocity changes. This rate of change is called
acceleration, and the electron mass is then defined as the ratio of the applied force to the resulting acceleration. The mass of the electron is found
to be about 9.11  10-28 grams. Not only the electron but all matter appears
to have positive mass, which is equivalent to saying that a force applied to
any object results in acceleration in the same direction as the force.
How does the other aspect, the charge of the electron, arise? All
electrons have an electric charge, and the amount of charge, like the
mass, is identical for all electrons. No one has ever succeeded in isolating an amount of charge smaller than that of the electron. The sign of
the charge of the electron is conventionally defined as negative; the
electron thus represents the fundamental unit of a negative charge.
TEXT 9
ELECTRONS AND ELECTRONIC CHARGES
An atom of ordinary hydrogen is composed of one positively
charged proton as a nucleus and one negatively charged electron. The
proton is about 1,840 times more massive than the electron. Heavier
atoms are built up of protons, neutrons, and electrons. When a body is
negatively charged, it has excess electrons; if positively charged, there
is a deficiency of electrons.
60
In metallic conductors many of the electrons are free to travel
about among the atoms like molecules of a gas.
When electric charges are static, they do not progress in any definite direction. Excess electrostatic charges reside on the outer surface of a
conductor, and their density is greatest in regions of greatest curvature.
TEXT 10
POLARITY
All matter is basically composed of two types of electricity: positive particles and negative particles. The negative particles are relatively light in weight and in constant motion. These orbiting particles exhibit equal and opposite electrical characteristics to the heavier particles
within the nucleus.
When an atom has the same number of electrons as it has protons,
it exalts no outward electrical properties. This is because the positive
and negative charges are exactly balanced. Such an atom is electrically
stable and is said to be neutral.
When an atom takes on an excess of electrons, it exhibits outward
characteristics similar to the electron. It takes an overall negative property. This condition is called a negative change, and such changed atom
is not electrically stable. A charged atom is called an ion, and if the
charge is negative, it is called a negative ion.
An atom which has less than its normal quota of electrons, displays
a positive polarity similar to that of the proton due to the fact that it has
more positive protons than it has negative electrons. This type of atom
is said to assume a positive electrical charge. Such an atom is known as
a positive ion while it is in this electrically unstable condition.
These charges of atoms are the simplest examples of static electricity. We stated that atoms are influenced to accept or give up electrons.
As the name dynamic electricity indicates, this is electricity in motion. The heart of the matter is electron movement.
In electrical system, electrical pressure is needed. To maintain this
pressure, a device that will move electrons in a way similar to that in
which the pump moves water is necessary. The most familiar is the
storage battery.
TEXT 11
61
ENERGY CONVERSION
Since energy can neither be created nor destroyed, any process of
producing voltage must be a conversion from one form of energy to
another. There are several names for the machines that convert mechanical energy into electrical energy. The dynamo is the source of huge
amounts of power; the magneto supplies minute power outputs; and in
between there are alternators and generators. All of these work at the
same principle, the principle demonstrated by Faraday when he discovered that relative motion between a magnetic field and a conductor in
that field would induce a current in the conductor. It makes no real difference whether the conductor is stationary and the field moving or the
field is stationary and the conductor moving. The important factor is the
relative motion in a manner that will cause flux to cut across the conductor.
POWER ENGINEERING DICTIONARY
A
Absolute error – абсолютная погрешность
Absolute sensitivity – абсолютная чувствительность
Absolutely selective protection system – система защиты с
абсолютной селективностью
Accelerated distance protection system – система
дистанционной защиты с ускорением
Acceleration – ускорение
Acceleration
of
distance
protection
–
ускорение
дистанционной защиты
Accumulator – аккумулятор
Accumulator discharge – разряд аккумулятора
62
Accuracy – точность
Accuracy class – класс точности
Active energy – активная энергия
Active power relay – реле активной мощности
Addressing – адресация
Adjacent coil – смежная катушка
Adjusting – настройка
Adjustment – настройка
Adjustment range – пределы регулирования
Admissible interrupting current – допустимый разрывной ток
Admittance – полная проводимость
Advance angle – угол опережения
Adding connection – согласное включение
Air-blast (circuit) breaker – воздушный выключатель
Air-blast switch – воздушный выключатель
Air gap – воздушный зазор
Airtight – герметичный
Air transformer – сухой трансформатор
Alarm – сигнал
Alarm lamp – сигнальная лампа
Alarm relay – сигнальное реле
Alarm signal – аварийный сигнал
Algorithm – алгоритм
Alignment – юстировка
Alive – под напряжением
Alkaline storage battery – щелочной аккумулятор
All-or-nothing relay – реле двухпозиционное, реле логическое
Allowable voltage – допустимое напряжение
All-pass (universal) filter – универсальный фильтр
Alternating component – переменная составляющая
Alternating current – переменный ток
Alternating current amplifier – усилитель переменного тока
Alternating current circuit – цепь переменного тока
Alternating-current measurement – измерение на переменном
токе
Alternating current relay – реле переменного тока
Alternating current system / а.с system – электрическая сеть
переменного тока
63
Alternating voltage – переменное напряжение
Alternator – синхронный генератор переменного тока
Ampere density – плотность тока
Ampere-turns – ампер-витки
Ampere-windings – ампер-витки
Amplifier – усилитель
Amplitude (of a symmetrical alternating quantity) – амплитуда
периодической величины
Amplitude modulation – амплитудная модуляция
Amplitude-frequency characteristic – амплитудно-частотная
характеристика
Analogue – аналоговый
Analogue-digital
converter
–
аналого-цифровой
преобразователь
Analogue transducer – аналоговый преобразователь
Analogue relay – аналоговое реле
Angular frequency – угловая частота
Anti-hunting relay – реле (защита) от асинхронного хода
Anti-hunting transformer – стабилизирующий трансформатор
Anti-pumping – блокировка от скачков
Anti-resonant circuit – параллельный (резонансный,
колебательный) контур
Anti-torque – противодействующий вращающий момент
Aperiodic component – апериодическая составляющая
Aperiodic damping – апериодическое затухание
Aperiodic phenomenon – апериодический процесс
Aperture – апертура
Apparent – видимый, очевидный, кажущийся, мнимый
Apparent impedance seen by distance relay – сопротивление
на зажимах реле сопротивления
Apparent power – полная мощность
Applied (impressed) voltage – приложенное напряжение
Arc – электрическая дуга
Arc extinction – гашение дуги
Arcing earth – дуговое замыкание на землю
Arcing time – время горения дуги
Arc resistance – сопротивление дуги
Arc-striking – возникновение дуги
64
Arc suppression coil – дугогасящая катушка
Arc voltage – напряжение на дуге
Arc voltage drop – напряжение на дуге
Armoured cable – бронированный кабель
Artificial mains / network – модель сети
Assembler – сборочное усройство
Assymmetry coefficient – коэффициент асимметрии
Astatic control – астатическое регулирование
Astatic regulator – астатический регулятор
Asynchronism – асинхронный режим
Asynchronous – асинхронный
Asynchronous generator – асинхронный генератор
Asynchronous operation – асинхронный режим (ход)
Asynchronous running – асинхронный режим (ход)
Atmospherics – асинхронный режим (ход)
Atmospheric overvoltage – атмосферные помехи, атмосферные
перенапряжения
Attachment – приставка
Attended substation – подстанция с оперативным персоналом
Attenuation (of a signal) – затухание (сигнала)
Attenuation band – полоса затухания
Attenuation characteristic – характеристика затухания
Attenuation due to ice-formation – затухание из-за гололеда
Attenuation factor – коэффициент затухания
Attenuation ratio – логарифмический декремент затухания
Attracted armature relays – реле с притягивающимся якорем
Audio-frequency oscillator – генератор звуковой частоты
Audio-frequency telegraphy – передача телеграфных
сообщений на тональной частоте
Audio oscillator – звуковой генератор
Automatic control – автоматическое управление
Automatic excitation control – автоматическое регулирование
возбуждения (АРВ)
Automatic control equipment – автоматическое устройство
Automatic field damper (killer, suppressor) – автомат гашения
поля (АГП)
Automatic frequency control – автоматическое регулирование
частоты (АРЧ)
65
Automatic load-frequency control – автоматическое
регулирование частоты и активной мощности (АРЧМ)
Automatic load-shedding control equipment – автоматическое
устройство по ограничению мощности
Automatic load transfer – автоматическое включение резерва
(АВР)
Automatic loss-of-synchronism control equipment –
автоматическое устройство защиты от потери синхронизма
Automatic loss-of-voltage tripping equipment – устройство
автоматического отключения при потере напряжения
Automatic program control – автоматическое программное
управление
Automatic reclosing – автоматическое повторное включение
(АПВ)
Automatic reclosing control equipment – автоматическое
устройство повторного включения
Automatic regulation – автоматическое регулирование
Automatic remote tripping – автоматическое телеотключение
Automatic reset – автоматический возврат
Automatic sequence control – автоматическое программное
управление
Automatic switch (low voltage) – автоматический выключатель
(низкое напряжение)
Automatic switching control equipment – автоматическое
устройство управления
Automatic
synchronous
coupler
–
автоматический
синхронизатор
Automatic reserve source – автоматическое включение резерва
(АВР)
Automatic transfer switch – устройство АВР (низкое
напряжение)
Automatic voltage control – автоматическое регулирование
напряжения (АРН)
Automatic voltage regulator – автоматический регулятор
напряжения
Automation – автоматизация
Auto-recloser – устройство АПВ
Аuto-reclosing – АПВ
Autotransformer – автотрансформатор
66
Auxiliaries (unit, station) transformer – трансформатор
собственных нужд (энергоблока, станционный)
Auxiliary circuit – вспомогательная цепь
Auxiliary generator – генератор собственных нужд
Auxiliary instrument transformer – вспомогательный
измерительный трансформатор
Auxiliary relay – реле промежуточное
Auxiliary services supply – источник оперативного тока
Auxiliary supplies – собственные нужды
Auxiliary transformer of a unit (of a power station) –
трансформатор собственных нужд блока (электростанции)
Availability – готовность
Availability factor – коэффициент готовности
Availability rate – норма готовности
Available capacity – готовая мощность
Available power – располагаемая мощность
B
Back ampere-turns – противодействующие витки
Back current – противоток
Back electromotive force – противодействующая ЭДС
Back up protection – резервная защита (РЗ)
Bad contact – плохой контакт
Balance relay – балансное реле
Balancing battery – буферная батарея
Balancing network – симметрирующая схема
Band – диапазон
Band of regulation – зона регулирования
Band-pass filter – полосовой фильтр диапазонов
Band-rejection – заграждающий фильтр
Band switch – переключатель
Band width – ширина полосы
Bank of accumulators – аккумуляторная батарея
Bank of capacitors – батарея конденсаторов
Bay – ячейка
Bay (of a substation) – ячейка электрической подстанции
Beat – биения
Beat frequency – частота биений
Bias current – ток смещения
67
Biased differential relay – дифференциальное реле смещения
Biased relay – реле с торможением
Bias electrical restraint – электрическое торможение
Bias voltage – напряжение смещения
Bidirectional pulses – биполярные импульсы
Bifilar winding – бифилярная обмотка
Bimetallic plate – биметаллическая пластина
Bipolar – двухполюсный
Block – блок
Block-diagram – блок-схема
Blocking circuit breaker closing – блокировка цепи включения
выключателя
Blocking diode – блокирующий диод
Blocking overreach distance protection system – система
дистанционной защиты с расширенной зоной и блокирующим
сигналом
Blocking protection system – система защиты с блокирующим
сигналом
Blocking relay – блокирующее реле
Blocking signal – блокирующий сигнал
Blocking time – время возврата АПВ
Blocking zone – зона блокировки
Blowing – перегорание
Blowout coil – искрогасительная катушка
Bobbin – катушка
Booster,
Booster
transformer
–
вольтодобавочный
трансформатор
Branch box – распределительная коробка
Branch line (spur) – ответвление от электрической линии
Brake magnet – тормозной магнит
Break – размыкание
Вrеаk-before-make contact – переключающий контакт с
предварительным замыканием цепи
Breakdown current – ток пробоя; разрядный ток
Breaker fail (failure) protection – УРОВ
Breaking capacity – отключаемая (разрывная) мощность
Bridge – мост
Bridge balance – уравновешенный мост
68
Bridge rectifier – мостовой выпрямитель
Bridging – шунтированный
Bucking – посадка напряжения
Buffer storage – промежуточный накопитель
Bundle conductors – расщепленные провода
Bundle conductors line – линия с расщепленными проводами
Burn-out – перегорание
Busbar protection – защита системы шин
Busbars – сборные шины
Busbar section – секция системы шин
Busbar
section
disconnector
–
секционирующий
разъединитель
Busbar sectionalising switch – секционный выключатель
Bus coupler circuit breaker – шиносоединительный
выключатель
Bushing of a transformer – ввод трансформатора
Bus section breaker – секционный выключатель
Bypass – байпас
Bypass a circuit breaker – шунтировать выключатель
Bypass switch – обходной выключатель
С
Cable conductor – жила кабеля
Cable duct (in a substation) – кабельный трубопровод
подстанции
Cable rack – кабельная полка
Cable tunnel – кабельный туннель
Calibrated scale – калиброванная шкала
Calibration curve – градуировочная кривая
Calibration report – протокол настройки
Calorimetric test – калометрические испытания
Capacitance between a conductor and earth – емкость фазы на
землю
Capacitance between conductors – междуфазная емкость
(емкость между проводами)
Capacitive current – емкостный ток
Capacitive feedback – емкостная обратная связь
Capacitive load – емкостная нагрузка
69
Capacitive potential divider – емкостный делитель напряжения
Capacitive reactance – емкостное сопротивление
Capacitive residual current – остаточный емкостный ток
Capacitive susceptance – емкостная проводимость
Capacitor – конденсатор
Capacitor discharge – разряд конденсатора
Capacitor tripping device – устройство РЗ с отключением от
предварительно заряженного конденсатора
Capacitor voltage supply unit – зарядное устройство
Capacitor voltage transformer – емкостный трансформатор
напряжения
Capacity of a battery – емкость батареи
Carrier channels – ВЧ каналы
Carrier current – ток несущей частоты
Carrier current protection – высокочастотная РЗ
Carrier frequency – несущая частота
Carrier frequency transmission – передача информации на
несущей частоте
Carrier frequency transmission over high voltage tines –
передача информации на несущей частоте по ЛЭЛ высокого
напряжения
Case – кожух
Cathode ray tube – электронно-лучевая трубка
Centre zero relay – реле с центральным положением
Centre-zero scale – шкала с нулем посередине
Certificate of calibration – аттестация настройки
Change of measuring range – изменение диапазона измерений
Change of state – изменение положения
Change-over switch – переключатель на два направления
Characteristic equation – характеристическое уравнение
Charge (of capacitors or batteries) – заряд (конденсаторов или
батарей)
Charger – зарядное устройство
Chart – диаграмма
Chart recorder – регистрирующий прибор
Check – проверка
Checking instrument – проверка систем измерения
Choke – дроссель
70
Choke coil – дроссель
Circle diagram – круговая диаграмма
Circuit – цепь
Circuit breaker – выключатель
Circuit breaker closing – включение выключателя
Circuit-breaker failure protection system – система защита от
повреждения выключателя
Circuit breaker opening – отключение выключателя
Circuit breaker position data – информация о положении
выключателя
Circuit characteristics – характеристика цепи
Circuit closed in standby position – цепь, замкнутая в режиме
резервирования
Circuit closed in working position – цепь, замкнутая в рабочем
положении
Circuit in service – цепь в работе
Circuit on standby – цепь в резерве
Circuit-opening contact – размыкающий контакт
Circular impedance characteristic – круговая характеристика
реле сопротивления
Circulating current system – система с циркулирующим током
Clear the short-circuit – устранить КЗ
Clipper – ограничитель
Clock pulse – синхронизирующий импульс
Close (to) (manually) – включить (вручную)
Closed-loop control – управление по замкнутому контуру
Close-up faults – повреждения вблизи мест установки РЗ
Closing (manual) – включение (вручную)
Closing contact – замыкающий контакт
Closing electromagnet – включающий электромагнит
Closing instruction (manual) – команда на включение
(вручную)
Closing mechanism – включающий механизм
Closing operation – операция включения
Closing time – время включения
Coarse adjustment – грубая настройка
Coarse reading – грубый отсчет
Coarse setting – ступень грубой регулировки
Coarse synchronizing – грубая синхронизация
71
Coaxial cable – коаксиальный кабель
Coding – кодирование
Coil – катушка
Collapse of frequency – лавина частоты
Collapse of voltage – лавина напряжения
Combined instrument transformer – комбинированный
измерительный трансформатор
Combined heat and power – комбинированное производство
тепла и электроэнергии
Coming into step – вхождение в синхронизм
Commercial test – промышленные испытания
Common auxiliaries – общестанционные собственные нужды
Common battery – общестанционная аккумуляторная батарея
Communication cable – кабель связи
Comparison circuit – схема сравнения
Compensating voltage – компенсирующее напряжение
Compensating winding – компенсирующая обмотка
Compensated network – компенсированная сеть
Compensating feedback – компенсирующая обратная связь
Compiler (program) – компилятор, транслятор
Complementary error – дополнительная погрешность
Complex impedance – комплексное сопротивление
Complex plane – комплексная плоскость
Complex power – комплексная мощность
Components – компоненты
Condensing set – агрегат с конденсационной турбиной
Conductance – проводимость
Conductive coupling – гальваническая связь
Conductivity – проводимость
Conductor – проводник
Conductor failure – повреждение провода
Connection diagram – схема соединений
Сonnection layout – расположение проводов
Сonnections – соединения
Connector – разъем
Constant resistance – постоянное сопротивление
Contact – контакт
Contact chatter – вибрация контактов
72
Contact closed in working position – контакт, замкнутый в
рабочем положении
Contact element – контактный элемент
Contact gap – зазор между контактами
Contact heating – нагрев контакта
Contact in inert gas – контакт в инертном газе (геркон)
Contactless pickup – бесконтактный датчик
Contact open in working position – контакт, разомкнутый в
рабочем положении
Contactor – контактор
Contact resistance – контактное сопротивление
Contact voltage – напряжение между контактами
Continuous action – непрерывное воздействие
Continuous control – непрерывное регулирование
Continuous curve characteristic – временная зависимость в
виде плавной кривой
Continuous output – длительно отдаваемая мощность
Continuous rating – номинальная длительно отдаваемая
мощность
Control – управление
Control action – управляющее воздействие
Control area – район регулирования
Control board (desk) – пульт (щит) управления
Control cable – кабель для вторичных цепей (контрольный
кабель)
Control circuit – цепь (контур)
Control current – ток управления
Control deviation – управляющее отклонение
Control discrepancy switch – ключ управления с указателем
несоответствия
Control engineer – диспетчер
Control equipment – аппаратура управления
Control instruction – команда управления
Control knob – кнопка управления
Controllability – управляемость
Controlled member – объект регулирования
Controlled output – управляющая величина
Controlled value – регулируемый параметр
73
Controller – контроллер (регулятор)
Controlling power range – диапазон регулирования
Control of network – управление сетью
Control order – команда управления
Control panel – пульт управления
Control process – процесс управления
Control pulse – управляющий импульс
Control range – диапазон управления
Control switch – ключ управления
Control unit – блок управления
Control voltage – управляющее напряжение
Control winding – управляющая обмотка
Conventional thermal power station – электростанция на
органическом топливе
Converter – преобразователь
Converter substation – преобразовательная подстанция
Conversion of electricity – преобразование электрической
энергии
Copper loss – потери в меди
Core of a transformer – сердечник (магнитопровод)
трансформатора
Corona effect – эффект короны
Corona loss – потери на корону
Correction – коррекция
Corrective action – корректирующее воздействие
Correct operation of a relay protection – правильное действие РЗ
Corrupted data – искаженные данные
Counting device (of operations) – счетное устройство
(операций)
Couple (to) – замыкание (замыкать)
Coupling between different phases of two circuits of a high
voltage link – взаимоиндукция между разными фазами двух цепей
высокого напряжения
Coupling between phases – взаимоиндукция между фазами
Coupling capacitor – конденсатор связи
Coupling circuit breaker – шиносоединительный выключатель
Coupling filter – фильтр присоединения
Cover of the relay – крышка реле
74
Current balance – баланс токов
Current balance relay – дифференциальное реле
Current carrying capacity – пропускная способность по току
Current circuit – токовая цепь
Current-dependent – зависимый от тока
Current limiter – ограничитель тока
Current limiting reactor – токоограничивающий реактор
Current protection – токовая РЗ
Current relay – токовое реле
Current resonance – резонанс токов
Current reversal – изменение направления тока
Current rush – бросок тока
Current transformer – трансформатор тока
Cutoff relay – реле отсечки
Cycle – цикл
D
Damage – повреждение
Damped oscillations – затухающие колебания
Damped transient – затухающий переходный процесс
Damper winding – демпферная обмотка
Damping – демпфирование
Damping circuit – демпфирующая цепь
Damping magnet – демпфирующий магнит
Damping decrement – декремент затухания
Damping ratio – коэффициент демпфирования
Dashpot – демпфер
DC/DC сonverter power supply – блок питания с
преобразователем постоянного напряжения
Dead band – мертвая зона
Dead earth – глухое заземление
Dead-end feeder – тупиковая линия
Dead short-circuit – металлическое короткое замыкание
Dead time – бестоковая пауза
Dead zone of a directional relay – мертвая зона направленного
реле
Deceleration – замедление (торможение)
Decoupling – развязка
75
Decoupling filter – разделяющий фильтр
Dedicated low-voltage wiring – блок вспомогательных цепей
Dedicated optical fibre link – специализированный оптиковолоконный канал связи
Deenergized line – линия без напряжения
De-exciting device – устройство развозбуждения
Deflection – отклонение стрелки
Deionization – деионизация
Deionization time – время деионизации
Delayed auto-reclose – АПВ с выдержкой времени
Delay link – линия задержки
Delay relay – реле с замедлением
Delta connection – соединение в треугольник
Delta-star connection – соединение звезда-треугольник
Dependent time relay – реле с зависимой от времени
характеристикой
Dephased – со сдвигом по фазе
Deviation from synchronous time – отклонение от синхронного
времени
Differential connection – включение по дифференциальной
схеме
Differential controller – дифференциальный регулятор
Differential protection – дифференциальная РЗ
Differential protection system (longitudinal) – система
продольной дифференциальной защиты
Differential relay – дифференциальное реле
Digital-analogue
converter
–
цифроаналоговый
преобразователь
Direct access – прямой доступ
Direct axis subtransient reactance – сверхпереходная
реактивность по продольной оси
Direct axis transient impedance – переходное полное
сопротивление по продольной оси
Direct current – постоянный ток
Direct current amplifier – усилитель постоянного тока
Direct current circuit – цепь постоянного тока
Direct current component of a short circuit current –
постоянная составляющая тока КЗ
Direct-current relay – реле постоянного тока
76
Direct current system / d.c. system – электрическая сеть
постоянного тока
Direct feedback – жесткая обратная связь
Direct intertripping – передача отключающего сигнала от РЗ
противоположного конца ВЛ
Directional comparison protection system – система
направленной защиты
Directional control – контроль направления
Directional current protection – направленная токовая РЗ
Directional earth relay – направленное реле от замыканий на
землю и КЗ на землю
Directional neutral current relay – направленная токовая РЗ
нулевой последовательности
Directional operation – направленное действие
Directional overcurrent relay – токовое реле направленного
действия
Directional power relay – реле направления мощности
Directional protection by signal comparison – направленная РЗ
со сравнением сигналов по концам защищаемой зоны
Directional relay – реле направленного действия
Direct overcurrent release – расцепитель максимального тока
Direct reading – непосредственный отсчет
Direct voltage – постоянное напряжение
Disconnectable busbar – система шин, секционированная
разъединителями
Disconnection (of a generating unit) – отключение генератора
Discrepancy switch – указатель несоответствия
Discriminative protection – селективная защита
Dispatch control – диспетчерское управление
Displacement voltage of the neutral points voltage –
напряжение смещения нейтрали
Display – индикатор, устройство отображения информации
Distance protection – дистанционная РЗ
Distance protection system – система дистанционной защиты
Distance relay – реле дистанционной защиты
Distance tuning – дистанционная настройка
Distorted waveform – искаженная форма кривой
Distortion – искажение
Distortion factor – коэффициент искажения
77
Distributed capacitance – распределенная емкость
Distributing board – распределительный щит
Distributing point – распределительный пункт
Distribution of electricity – распределение электрической
энергии
Distribution substation – распределительная подстанция
Disturbance – нарушение в энергосистеме, помеха
Divergent oscillation – нарастающие колебания
Division – деление
Domain – зона
Double busbar system – двойная система шин
Double-channel – двухканальный
Double-circuit line – двухцепная линия
Double-delta connection – соединение треугольниктреугольник
Double earth fault – двойное замыкание на землю
Double-humped resonance – двугорбый резонанс
Double-line-to-neutral fault – двухфазное КЗ на землю
Double-phase fault – двухфазное повреждение
Double-phase short circuit – двухфазное КЗ
Double-throw contact – перекидной контакт
Double-wired conductor – двухжильный провод
Double-wound transformer – двухобмоточный трансформатор
Draw-out unit – выдвижная ячейка
Drive – привод
Dry rectifier – сухой выпрямитель
Duplicate supply – двухстороннее питание
Duplex channel – дуплексный канал
Dynamic braking – динамическое торможение
Dynamic response – динамическая характеристика
Dynamic stability – колебательная устойчивость
E
Earth – заземление
Earth connection – соединение с землей
Earth current – ток утечки на землю
Earth detector – индикатор замыканий на землю
Earthed neutral – заземленная нейтраль
Earth fault – замыкание на землю
78
Earth fault current – ток замыкания (КЗ) на землю
Earth fault protection – защита от замыканий (КЗ) на землю
Earth indication relay – реле фиксации замыканий на землю
Earthing reactor – заземляющий реактор
Earthing resistance – сопротивление заземления
Earthing resistor – заземляющий резистор
Earthing switch – заземляющий разъединитель
Earthing terminal – заземляющий зажим
Earth leakage current – ток утечки на землю
Earth magnetism – геомагнетизм
Earth resistance – сопротивление земли
Earth-wire – заземленный (заземлительный) трос
Eddy currents – вихревые токи
Effective measuring range – предел измерений
Effective range – рабочая часть шкалы
Effective value – эффективное (действующее) значение
Efficiency – коэффициент полезного действия
Electric line – электрическая линия
Electrical angle – электрический угол
Electrical circuit – электрическая цепь
Electrical equipment – электрооборудование
Electrical measurement – электрическое измерение
Electrical power system – система электроснабжения
Electrical power network – электрическая сеть
Electrodynamic relay – электродинамическое реле
Electromagnetic relay – электромагнитное реле
Electronic relay – электронное реле
Elliptical impedance characteristic
– эллиптическая
характеристика реле сопротивления
Emergency – авария
Emergency button – аварийная кнопка
Emergency conditions – аварийный режим
Emergency control schemes – противоаварийная автоматика
Emergency crew – оперативно-выездная бригада
Emergency power supply – аварийное питание
End – конец, вывод (обмотки)
End winding – вывод обмотки
Energise (a relay) – подача напряжения (тока) в реле, питание
79
Energise – подача напряжения
Energise accidentally – случайная (ошибочная) подача
напряжения
Energised facility – установка под напряжением
Environmental withstand – допустимые климатические
условия
Equivalent impedance – эквивалентное сопротивление
Erase – удаление
Error correction – устранение ошибки
Error detection – обнаружение ошибки
Even harmonic – четная гармоника
Evenly divided scale – равномерная шкала
Exact-reading scale – шкала точного отсчета
Exchange power control – управление перетоками мощности
Excitation response – скорость нарастания возбуждения
Exciter – возбудитель
Exciting current – ток возбуждения
Expanded scale – растянутая шкала
Exponential curve – экспоненциальная кривая
Extension cord – удлинительный шнур
External characteristic – внешняя характеристика
External disturbance – внешнее повреждение
External feedback – внешняя обратная связь
External short circuit – КЗ вне зоны действия РЗ
External terminal – внешний зажим
Extra high voltage network – сеть сверхвысокого напряжения
Extremely sensitive – чрезвычайно чувствительный
F
Factory tests – заводские испытания
Failure – неисправность
Failure rate – интенсивность отказов
Failure to operate (of protection equipment) – отказ в
срабатывании (устройства защиты)
Falling out of step – выход из синхронизма
False operation (tripping) – ложное срабатывание
False switching – ошибочное включение
Fast automatic reclosing – быстродействующее АПВ
Fault – повреждение
80
Fault between laminations – замыкание между пластинами
магнитопровода
Fault between turns – межвитковое КЗ
Fault between windings – КЗ между обмотками
Fault clearance – отключение КЗ
Fault clearing, short circuit clearing – отключение токов КЗ
Fault clearance time – полное время от момента
возникновения до момента отключения КЗ
Fault current – ток повреждения
Fault detector – пусковой орган
Faulted circuit impedance – сопротивление поврежденной цепи
Fault impedance – полное сопротивление в месте повреждения
Fault rate – интенсивность отказов
Fault resistance – активное сопротивление в месте повреждения
Fault signaling – аварийная сигнализация
Faults in rotor winding – повреждения в обмотке ротора
Faults recorder – аварийный осциллограф
Fault situation – аварийный режим
Fault statistics – статистика повреждения
Fault throwing switch – короткозамыкатель
Feedback – обратная связь
Feedback amplifier – усилитель с обратной связью
Feedback control – управление с обратной связью
Feedback ratio – коэффициент обратной связи
Feeder – питающая линия
Feeder
bay
–
присоединение
распределительного
электрического устройства
Feeder circuit-breaker – линейный выключатель
Feeder disconnector – линейный разъединитель
Feeding transformer – питающий трансформатор
Ferrit core – ферритовый сердечник (магнитопровод)
Ferroresonance – феррорезонанс
Ferroresonance voltage regulator – феррорезонансный
регулятор напряжения
Fiber optics – оптоволокно
Fidelity – качество воспроизведения
Field suppression – гашение поля
Field circuit – распределительная сеть
Field winding – обмотка возбуждения, обмотка подмагничивания
81
Figure of merit – добротность
Fine reading – точный отсчет
Fine setting – ступень точной регулировки
First harmonic – первая гармоника
Five-legged transformer – пятистержневой трансформатор
Fixed contact – неподвижный контакт
Fixed setpoint control – управление с фиксированной установкой
Fixed value control – управление по параметру
Flash-overcurrent – ток перекрытия
Fleeting indication – следящее показание
Flexible cable – гибкий кабель
Flip-flop – триггер
Floating point – плавающая запятая
Float switch – поплавковое реле
Flow diagram – структурная схема
Flush mounting – утопленный монтаж
Foam fire extinguisher – пожаротушение с помощью пены
Follow-up control – следящее регулирование
Follow-up system – следящая система
Forced control – сильное регулирование
Forced outage – вынужденное отключение
Frame fault – замыкание на корпус
Frame leakage protection system – система защиты от
замыкания на корпус
Frame protection – защита от замыкания на корпус
Free oscillation – свободные колебания
Frequency band – полоса частот
Frequency changer – преобразователь частоты
Frequency control – регулирование частоты
Frequency converter – преобразователь частоты
Frequency converter substation – подстанция, преобразующая
частоту
Frequency division – деление частоты
Frequency drift – уход частоты
Frequency interval between channels – частотный интервал
между каналами
Frequency meter – частотомер
Frequency modulation – частотная модуляция
Frequency multiplication – умножение частоты
82
Frequency reduction – снижение частоты
Frequency relay – реле частоты
Frequency response – частотная характеристика
Functional block – функциональный блок
Fundamental error of measurement – основная погрешность
измерения
Fundamental wave – основная гармоника
Fuse link – плавкая вставка
G
Gain – коэффициент усиления
Gain-bandwidth product – произведение коэффициента
усиления на ширину полосы пропускания
Galloping of conductor – пляска проводов
Galvanometer – гальванометр
Gang(ed) control – групповое управление
Gapless – без воздушного зазора
Gas insulated metal-enclosed substation – бронированная
подстанция с газовой изоляцией
Gas-pressure cable – газонаполненный кабель
Gas turbine – газовая турбина
Gas turbine set – газотурбинный агрегат
Gate – логический элемент
General operating test – полная проверка
Generator operation – генераторный режим
Generator protection – защита генератора
General-purpose instrument – универсальный измерительный
прибор
Generating capacity – установленная мощность генератора
Generating set – электрогенерирующий агрегат
Generating unit – энергоблок
Generation – генерация
Generation of electricity – производство электроэнергии
Generation system – электрогенерирующая система
Generator – генератор
Generator protection – релейная защита генератора
Generator-transformer – блок генератор-трансформатор
83
Generator-transformer protection – релейная защита блока
генератор-трансформатор
Geothermal power station – геотермическая электростанция
Governing equipment – управляемое оборудование
Grading margin – ступень селективности
Group drive – групповой привод
H
Half-cycle – полупериод
Half-wave – полупериод
Half-wave rectifier – однополупериодный выпрямитель
Hall-effect – эффект Холла
Harmonic – гармоника
Harmonic component – гармоническая составляющая
Harmonic content – содержание гармоник
Harmonic function – гармоническая функция
Harmonic oscillation – гармоническое колебание
Heavy conditions – утяжеленный (послеаварийный) режим
High-frequency power line carrier blocking – блокировка по
ВЧ каналу
High-frequency cable – высокочастотный кабель
High-frequency generator – высокочастотный генератор
High
frequency
disturbance
test
–
проверка
помехоустойчивости
Higher harmonic – высшая гармоника
Higher harmonic voltage – напряжение высших гармоник
High impedance differential protection – продольная
дифференциальная защита с реле, имеющим большое
сопротивление
High set – грубая ступень
High-speed automatic reclosing – быстродействующее АПВ
High-speed automatic reclosing device – устройство
быстродействующего АПВ
High-speed excitation system – быстродействующая система
возбуждения
High voltage – высокое напряжение
High-voltage d.c. link / HVDC link – электропередача (вставка)
постоянного тока
High-voltage installation – установка высокого напряжения
84
High-voltage network – сеть высокого напряжения
High-voltage side – сторона высокого напряжения
High-voltage switchgear – распределительное устройство
(электрооборудование) высокого напряжения
High-voltage winding – обмотка высокого напряжения
Holding winding – удерживающая обмотка
Hunting – качания (в энергосистеме), колебания (в системе
регулирования)
Hydroelectric set – гидроагрегат
Hydroelectric power station – ГЭС
Hysteresis – гистерезис
Hysteresis loop – петля гистерезиса
Hysteresis losses – потери на гистерезис
I
Ideal rectifier – идеальный выпрямитель
Ideal synchronizing – точная синхронизация
Idle – отсутствие нагрузки
Idling – работа на холостом ходе
Idling conditions – работа на холостом ходе
Immobilization – вывод из работы
Impedance earthed (neutral) system – электрическая сеть с
заземленной через сопротивление нейтралью
Impedance protection – дистанционная защита
Impedance relay – реле дистанционной защиты
Impedance voltage (of a transformer) – напряжение короткого
замыкания (трансформатора)
Impulse counter – счетчик импульсов
Impulse voltage test – проверка изоляции
Inadvertent operation – неправильное срабатывание
Incorrect operation of relay protection – неправильное действие
защиты
Independent time relay – реле с независимой выдержкой
времени
Indicating relay – реле указательное
Indicator lamp – сигнальная лампа
Indicator of sense of rotation – указатель направления вращения
Indoor apparatus – аппаратура внутренней установки
85
Indoor substation – закрытая подстанция
Indoor switch-gear – закрытое распределительное устройство
Induced voltage – наведенное напряжение
Inductance – индуктивность
Induction relay – индукционное реле
Industrial interference – индустриальные помехи
Inertia constant – постоянная инерция
Inherent feedback – внутренняя обратная связь
Initial commissioning test – пуско-наладочные испытания
Initial symmetrical (sub transient) short circuit – начальное
значение симметричного тока (сверхпереходный ток) КЗ
Injection type relay – защита с наложением вспомогательного
напряжения
Inoperative direction – направление действия
Input winding – входная обмотка
Insensitivity of control – нечувствительность системы
управления (мертвая зона)
In service – в эксплуатации
Inspection – осмотр
Instability – неустойчивость
Instantaneous element – безынерционное звено
Instantaneous relay – быстродействующее реле (мгновенного
действия)
Instantaneous value – мгновенное значение
Instruction – команда
Instructions for mounting and maintenance of relays –
инструкции по монтажу и обслуживанию реле
Instrument – прибор
Insulation resistance – сопротивление изоляции
Insulation test voltage – напряжение испытания изоляции
Integral action – интегральное воздействие
Integral control – интегральное регулирование
Integral controller – интегральный регулятор
Integrated circuit – интегральная схема
Integrator – интегратор
Interconnected systems – объединенные энергосистемы
Interconnection – межсистемная связь
Interference – влияние
86
Interference effect – влияние помех
Interference filter – фильтр от влияния помех
Interference frequency – частота наводки (помехи)
Interference immunity against electrostatic discharge (ESD) –
помехоустойчивость микропроцессорных устройств релейной
защиты при электростатических разрядах
Interference immunity against transient signal (burst) –
помехоустойчивость микропроцессорных РЗ при единичных
импульсах переходных процессов
Interference pulse – импульс помехи
Interlock – блокировка
Interlocking signal – блокирующий сигнал
Intermittent contact – прерывистый контакт
Intermittent earth – перемежающееся замыкание на землю
Intermittent fault – неустойчивое повреждение
Internal combustion set – электроаппарат с двигателем
внутреннего сгорания
Internal short circuit – КЗ в зоне действия защиты
Intertripping – телеотключение
Iterruption arc – дуга при размыкании контактов
Interruption of supply – нарушение электроснабжения
Interturn fault – междувитковое КЗ
Inverse characteristic relay – реле с обратнозависимой
времятоковой характеристикой
Inverse time / Very inverse time / Extremely inverse time current relay – реле максимальной токовой защиты, имеющие
стандартную, большую и очень большую зависимость времени
срабатывания от тока
Ionization – ионизация
Iron losses – потери в стали
Iron-nickel accumulator – железоникелевый аккумулятор
Islanding – вывод на изолированную работу
Isolated network operation – изолированная работа
Isolated neutral system – система с изолированной нейтралью
Isolated operation – изолированная работа
Isolated system – изолированная энергосистема
Isolating transformer – изолирующий (разделяющий)
трансформатор
Isolation transformer – разделительный трансформатор
87
Issuing of permit to work – разрешение на производство работ
In-rush, Inrush – бросок тока
J
Jack – гнездо
Jumper – перемычка
Jumper board – сборка зажимов
K
Kiosk substation – КРУ
Knob – переключатель
Knob with indicator – переключатель с сигнализацией
L
Lagging current – отстающий ток
Latch(ing) relay, Latch-in relay – реле с запоминанием
Lightning discharge – разряд молнии
Line – линия
Linear scale – линейная шкала
Linear system – линейная система
Line attenuation – линейное затухание
Line charging current – ток заряда линии
Line-drop compensation – компенсация падения напряжения в
линии
Line fault – повреждение на линии
Line impedance angle – угол полного сопротивления линии
Line protection – релейная защита линии
Line reactor – линейный реактор
Line trap – линейный заградитель
Line voltage – линейное напряжение
Live circuit breaker – включенный выключатель
Live line – линия под напряжением
Load in a system – нагрузка энергосистемы
Load curve – график нагрузки
Load duration curve – график продолжительности нагрузки
Loading resistor – нагрузочный резистор
Local back-up (circuit and substation) – местное
резервирование (цепи и подстанции)
Local control – местное управление
88
Logical multiplication – логическое умножение
Logic scheme – логическая схема
Longitudinal
differential
protection
–
продольная
дифференциальная защита
Long power transmission line – линия длинных электропередач
Loop current – контурный ток
Loss – потеря
Loss of excitation – потеря возбуждения
Loss of load – потеря нагрузки
Loss of stability – потеря устойчивости
Loss of synchronism – потеря синхронизма
Loss of synchronism relay – реле защиты от асинхронного хода
Loss of voltage – потеря напряжения
Loss of voltage relay – реле потери напряжения
Lower frequency (to) – снижение частоты
Low frequency – низкая частота
Low-frequency amplifier – низкочастотный усилитель
Low-frequency band – низкочастотный диапазон
Low-operating – медленнодействующий
Low set – чувствительная ступень
Low voltage – низкое напряжение
Low-voltage apparatus – аппаратура низкого напряжения
Low-voltage side – сторона низшего напряжения
M
Magnetic circuit – магнитопровод
Magnetizing current – ток намагничивания
Magnetizing inrush – бросок тока намагничивания
Magnetizing inrush restrain – торможение при броске тока
намагничивания
Magnetoelectric relay – магнитоэлектрическое реле
Magneto-hydro- dynamic thermal power station (MHD power
station) – магнитогидродинамическая электростанция (МГДэлектростанция)
Magnetomotive force – магнитодвижущая сила
Magnitude of disturbance – степень нарушения режима
Main busbar – рабочая система шин
Main generator – основной генератор
89
Main protection – основная защита
Mains voltage – напряжение сети
Maintenance – эксплуатация (техническое обслуживание)
Maintenance tests – эксплуатационные испытания
Maintenance work – текущий ремонт
Make and break – переключение
Make-break time – время бестоковой паузы АПВ
Make time – полное время включения
Making capacity – мощность включения
Maloperation – ложное действие
Manned substation – подстанция с обcлуживающим персоналом
Manual closing – включение вручную
Manual opening – отключение вручную
Manual regulation – ручное регулирование
Master controller – центральный регулятор
Master substation – опорная подстанция
Matching transformer – согласующий трансформатор
Maximum asymmetric short circuit current – максимальное
значение несимметричного тока КЗ
Maximum voltage relay – реле максимального напряжения
Mean deviation – среднее отклонение
Mean square error – среднеквадратичная ошибка
Mean time between failure – среднее время между
повреждениями
Mean value (of a periodic quantity) – среднее значение
(периодической составляющей)
Measuring relay – измерительное реле
Measuring winding – измерительная обмотка
Mechanical durability – механическая устойчивость
Medium-voltage – среднее напряжение
Medium-voltage winding – обмотка среднего напряжения
Megger – мегомметр
Men on duty – дежурный персонал
Mercury contact – серебряный контакт
Mesh (of a system) – кольцевая линия с несколькими
источниками питания
Meshed system – сложно-замкнутая электрическая сеть
Mesh-current method – метод контурных токов
Meshed network – замкнутая цепь
Metalclad cable – бронирований кабель
90
Metal-clad installation – комплектное распределительное
устройство
Metering winding – измерительная обмотка
MHO-type distance relay – реле проводимости дистанционной
защиты
Microwave pilot protection system – система защиты с СВЧ
каналом
Midposition – среднее положение
Mimic diagram (wall diagram) – мнемосхема
Mismatch – рассогласование
Mounting – монтаж
Movable contact – подвижный контакт
Moving coil – подвижная катушка
Moving coil relay – реле с подвижной катушкой
Moving part – подвижная часть
Motor protection – защита электродвигателя
Multi-ended line – многоконцевая (разветвленная) линия
Multilayer mounting – многослойный монтаж
Multiple earth fault – многократное замыкание на землю
Multiple shot reclosing – многократное автоматическое
повторное включение (АПВ)
Multiposition relay – многопозиционное реле
Multisection coil – многосекционная катушка
Multishot reclosing – многократное АПВ
Multi-terminal line – разветвленная линия
Multiwinding transformer – многообмоточный трансформатор
N
Negative bias – отрицательное смещение
Negative sequence component – составляющая обратной
последовательности
Negative sequence impedance – сопротивление обратной
последовательности
Network with directly earthed neutral – сеть с
глухозаземленной нейтралью
Network with isolated neutral – сеть с изолированной нейтралью
Neutral current – ток нулевой последовательности
Neutral point – нулевая точка
Neutral point connection – режим нейтрали
91
Neutral point displacement voltage – напряжение смещения
нейтрали
Neutral point in a polyphase system – нейтральная точка
многофазной системы
Noisefree – без помех
Noise immunity – помехоустойчивость
Noise level – уровень помехи
Noise limitation – ограничение помехи
No-load current – ток холостого хода
No-load operation – работа на холостом ходу
No-load power – мощность холостого хода
No-load test – испытание на холостом ходу
No-load voltage – напряжение холостого хода
Nominal current – номинальный ток
Nominal transformation ratio – номинальный коэффициент
трансформации
Nominal value – номинальная величина
Nominal voltage – номинальное напряжение
Nominal voltage of a system – номинальное напряжение
электрической сети
Non-attended substation – необслуживаемая подстанция
Non-availability – неготовность
Non-availability factor – коэффициент неготовности
Non-linear distortion – нелинейное искажение
Non-linearity – нелинейность
Non-linear resistor – нелинейное сопротивление
Non-sinusoidal current – несинусоидальный ток
Non-successful reclosing – неуспешное АПВ
Normally closed break contact – нормально замкнутый
размыкающий контакт
Normal operating condition – нормальный режим
Nuclear (thermal) power station – атомная электростанция
Number of auto-reclose – число циклов АПВ
Numerical relay – цифровое реле релейной защиты
O
Occur – случаться, происходить (о любом событии)
On-load tap-changer – устройство РПН
92
Open – отключение
Open-delta connection – соединение в разомкнутый треугольник
Opening – отключение
Opening mechanism – отключающий механизм
Opening time – время отключения
Open-loop control – управление в разомкнутом контуре
Operating characteristic – характеристика срабатывания реле
Operating availability – оперативная готовность
Operating current – оперативный ток
Operating impedance – рабочий импеданс (полное
сопротивление)
Operating lag (of a relay) – задержка реле при срабатывании
Operating range – рабочий диапазон
Operating rules – правила эксплуатации
Operating time of protection – время срабатывания защиты
Operating times accuracy – точность времени срабатывания
Operating voltage (in a system) – рабочее напряжение
электрической сети
Operating winding – рабочая обмотка
Operative current – оперативный ток
Operative direction – направление действия
Optical fibre cable – волоконно-оптический кабель
Optical link pilot protection system – система защиты со
связью посредством световода
Optocupler – оптическая развязка, оптопара
Oscillations – колебания
Oscillogram – осциллограмма
Oscillograph – осциллограф
Outage – выход из строя, аварийное отключение
Outdoor apparatus – аппаратура для наружной установки
Outdoor substation – открытая подстанция
Outdoor switch-gear – ОРУ
Outgoing (incoming) feeder – присоединение отходящей
(питающей) линии
Out-of-operation – бездействующий
Out-of-order – неисправный
Out of service – вывести из работы
Out-of-step protection – РЗ от асинхронного хода
93
Out-of-tune – расстроенный
Output circuit – выходная цепь
Output current – выходной ток
Output relays module – блок выходных реле
Output stage – выходной каскад
Output terminal – выходной зажим
Output value – выходная величина
Output winding – выходная обмотка
Over… protection – защита максимального принципа
действия
Overcurrent protection – максимальная токовая защита
Overcurrent relay – реле максимальной токовой защиты
Overcurrent time-lag relay – максимальная токовая защита с
зависимой времятоковой характеристикой
Over-excitation – перевозбуждение
Overfluxing in power transformers – перевозбуждение
силовых трансформаторов
Overhaul – капитальный ремонт
Overhead line – капитальный ремонт
Overhead system – воздушная электрическая сеть
Overheating – защита от перегрева
Overload – перегрузка
Overload operation – режим перегрузки
Overload protection – защита от перегрузки
Overload protection system – система защиты от перегрузки
Overload relay – реле защиты от перегрузки
Overall fault clearance time – полное время устранения
повреждения
Overreaching (for a distance protection system) – расширенная
зона (для дистанционной защиты)
Overshoot – перерегулирование
Overspeed protection device – защита от разгона турбины
Overvoltage – перенапряжение
Overvoltage protection – защита максимального напряжения
P
Packet switch – пакетный выключатель
Pairing – парная скрутка
Pair twisting – парная скрутка
Parallel access – параллельный доступ
94
Parallel connection – параллельное соединение
Paralleling – включение на параллельную работу
Parallel operation – параллельная работа
Passing contact – проскальзывающий контакт
Peak load – максимум нагрузки
Percentage-differential relay – дифференциальное реле с
заданным относительным параметром срабатывания, процентнодифференциальное реле
Percentage differential protection – дифференциальная РЗ с
процентным торможением
Percentage relay – процентное реле
Periodic component – периодическая составляющая
Permanent fault – устойчивое повреждение
Permissible error – допустимая погрешность
Permissive intertripping – передача отключающего сигнала от
РЗ противоположного конца ВЛ
Permissive overreach distance protection system – система
дистанционной защиты с расширенной зоной и разрешающим
сигналом
Permissive protection system – система защиты с
разрешающим сигналом
Permissive underreach distance protection system – система
дистанционной защиты с сокращенной зоной и разрешающим
сигналом
Petersen coil – катушка Петерсона
Phase – фаза
Phase coincidence – совпадение фаз
Phase comparator relay – реле сравнения фаз
Phase
comparison
protection
system
–
система
дифференциальной фазной защиты
Phase current – ток фазы
Phase displacement – фазовое смещение
Phase-earth coupling – однофазная индуктивность
Phase lag – запаздывание по фазе
Phase opposition – противофаза
Phase segregated differential current position – пофазная
дифференциальная токовая защита
Phase sequence – последовательность фаз
Phase sequence indicator – указатель чередования фаз
95
Phase sequence reversal – изменение порядка чередования фаз
Phase-sequence test – проверка порядка чередования фаз
Phase-shifting network – фазосдвигающая схема
Phase to earth voltage (line to ground voltage) – фазное
напряжение
Phase-to-groundl fault – замыкание фазы на землю, КЗ на землю
Phase to phase voltage (line to line voltage) – линейное
напряжение
Phase to neural voltage (line to neural voltage) – фазное
напряжение
Phase unbalance protection – защита от несимметрии фаз
Phase voltage of a winding – фазное напряжение обмотки
Pick-up, Pickup – пуск защиты или элемента защиты
Pl equivalent – П-образная схема замещения
… - pilot – тип передачи сигналов в дифференциальной
защите (проводной, радио или ВЧ)
Pilot protection system – система защиты с контрольными
сигналами
Plant motor – электродвигатель собственных нужд
Plug-and-jack – штепсельный соединитель
Plug-and-socket connection – штепсельное соединение
Plug-in unit – сменный блок
Pneumatically operated switch – выключатель с воздушным
приводом (воздушный выключатель)
Pointer – указатель, стрелка
Pointer stop – ограничитель хода стрелки
Point of connection – точка присоединения
Point-to-point-wiring – навесной монтаж
Polarity – полярность
Polarity indicator – прибор для определения полярности
Polarity reversal – изменение полярности
Polarity test – проверка полярности
Polarized relay – поляризованное реле
Pole (of an equipment) – полюс (устройства)
Pole (of a d.c. system) – полюс (сети постоянного тока)
Pole-mounted substation – мачтовая подстанция
Portable instrument – переносной прибор
Portable test equipment – переносное испытательное
устройство
96
Position indicator – сигнализация положения
Positive feedback – положительная обратная связь
Positive sequence – прямая последовательность
Positive sequence component – составляющая прямой
последовательности
Positive sequence impedance – полное сопротивление прямой
последовательности
Positive voltage – положительное напряжение
Post-emergency conditions – послеаварийный режим
Post-fault conditions – послеаварийный режим
Potential – потенциал
Potential difference – разность потенциалов
Power – мощность
Power charge controller – контроллер управления мощностью
Power factor – коэффициент мощности (cos φ)
Power frequency – промышленная частота
Power-frequency characteristic – характеристика мощностьчастота
Power-frequency control – управление частотой и активной
мощностью
Power input – входная мощность
Power limitation – ограничение мощности
Power line carrier protection system – система защиты с
высокочастотной связью
Power output – выходная мощность
Power relay – реле мощности
Power station – электростанция
Power supply module – блок питания
Power system separation – деление энергосистемы
Power swing blocking – блокировка при качаниях
Power unit – блок питания
Prearcing time – время плавления
Protection against … – защита от чего-либо
Press-button switch – кнопочный переключатель
Pressure monitoring device – реле контроля давления
Pressure transducer – датчик давления
Primary – первичный
Primary circuit – первичная цепь
Primary control – первичное регулирование
97
Primary testing – проверка РЗ первичным током
Primary winding – первичная обмотка
Program of routine maintenance – график периодических
проверок
Protected line – защищаемая ЛЭП
Protected zone – защищаемая зона
Protection – защита
Protection against short circuits – защита от КЗ
Protection assembly – комплект защит
Protection by phase comparison – РЗ, сравнивающая фазы
токов по концам защищаемой зоны
Protection device – устройство защиты
Protection relay – реле защиты
Protection system – система защиты
Protection system associated with signaling system – система
защиты, использующая каналы связи
Protection winding – обмотка СТ
Protection with stage (step) acceleration – РЗ с ускорением
зоны, имеющей выдержку времени
Pulsating current – пульсирующий ток
Pulsating voltage – пульсирующее напряжение
Pulse edge – фронт импульса
Pulse-relay – импульсное реле
Pulse train – серия импульсов
Pumped storage power plant – ГАЭС
Pumped storage station – ГАЭС
Pump-storage generating set – генерирующее устройство ГАЭС
Pump-turbine – насос-турбина
Push-button control group – кнопочная станция
Q
Quadrature-axis subtransient reactance – сверхпереходное
реактивное сопротивление по поперечной оси
Quadruple conductor – четырехпроводный проводник (4
провода на фазу)
Quenched spark – искра при размыкании
R
Radial network – радиальная сеть
98
Radiated
electromagnetic
field
test
–
проверка
помехоустойчивости
Radio link protection – защита с радиоканалом
Random synchronizing – включение без контроля синхронизма
Range of adjustment – диапазон регулировок
Range of regulation – зона регулирования
Range of scale – диапазон шкалы
Rate of change of... relay – реле производной...
Rated capacity – номинальная емкость
Rated current of a contact – номинальный ток контакта
Rated thermal current – номинальный ток термической
стойкости
Rate of pulse rise – крутизна фронта импульса
Reactance – реактивное сопротивление
Reactance relay – реле реактивного сопротивления
Reactive energy – реактивная энергия
Real time – реальное время
Receiver – приемник
Receiving channel – канал приема
Receiving level – уровень приема
Recovery time – время восстановления
Recovery voltage – восстанавливающееся напряжение
Rectification – выпрямление
Rectifier – выпрямитель
Reduced measuring error – относительная погрешность
измерения
Reduced voltage – пониженное напряжение
Reed relay – реле с герконом
Reference instrument – эталонный прибор
Reference value – относительная величина
Reference voltage – опорное напряжение
Reflected wave – отраженная волна
Register – регистр
Regulating point – точка регулирования
Regulation – регулирование
Regulation level – уровень регулирования
Regulator performance – качество регулирования
Relative error – относительная погрешность
99
Relatively selective protection system – система защиты с
относительной селективностью
Relay – реле
Relay box – релейный шкаф
Relay cabinet – релейный шкаф
Relay
characteristic
angle
–
угол
максимальной
чувствительности
Relay coil – катушка реле
Relay cubicle – релейный шкаф
Relay element – элемент реле
Relay protection – релейная защита
Relay set – комплект реле
Relay winding – обмотка реле
Release – расцепитель
Release lag – замедление отпускания
Reliability – надежность
Reliability index – показатель надежности
Remote backup protection – защита, осуществляющая дальнее
резервирование
Remote control – телеуправление
Remote indication – телесигнализация
Remote setting – дистанционное введение установок
Remote supervision – телеконтроль
Remotely controlled substation – подстанция с дистанционным
управлением
Repair – ремонт
Reserve busbar – резервная система шин
Reset – возврат
Reset push-button – кнопка возврата
Reset time – время возврата
Resetting value – параметр возврата
Residual capacitive voltage – остаточное емкостное напряжение
Residual current – остаточный ток
Residual magnetization – остаточное намагничивание
Residual voltage – напряжение нулевой последовательности
Resistance – активное сопротивление
Resistivity – удельное сопротивление
Resonance – резонанс
100
Resonant earthed (neutral) system / arc-suppression-coil-earth
(neutral system) – электрическая сеть с дугогасящей катушкой
Response level – порог срабатывания
Response time – время отклика
Restore – восстанавливать
Restraining coil – тормозная катушка
Restricted earth fault protection of transformer –
дифференциальная токовая защита трансформатора, включенная
на ток нейтрали и фазные токи первичной обмотки
Retardation time – время возврата
Returning percentage – коэффициент возврата
Returning value – значение возврата
Return to initial position – возврат (реле)
Reversible hydroelectric set – обратимый гидроагрегат
Rigid wiring – жесткий монтаж
Ring connection – кольцевая схема
Ring feeder (loop) – кольцевая схема с одним источником
питания
Ring mains – кольцевая сеть
Ring network – кольцевая сеть
Ring operation – кольцевой режим работы
Ring substation – подстанция с кольцевой системой шин,
секционированной разъединителями
Rise in frequency – повышение частоты
Risk of failure – опасность возникновения неисправности
Root-mean-square deviation – среднеквадратичное отклонение
Root-mean-square value – среднеквадратичная величина
Rotor earth fault protection – защита ротора от замыканий на
землю
Rotor fault to frame – замыкания обмотки ротора на корпус
Rotor winding – обмотка ротора
Rough reading scale – шкала грубого отсчета
Round-the-clock service – круглосуточное обслуживание
Running-down – выбег
S
Sample – выборка
Sampling cycle – цикл замеров
101
Satellite substation – подстанция групповoгo дистанционного
управления
Saturable reactor – насыщающийся реактор
Saturable transformer – насыщающийся трансформатор
Saturation – насыщение
Saturation area – участок насыщения
Saturation region – область насыщения
Scale – шкала
Schematic diagram – структурная схема
Screening – экранирование
Screw connection – скручивание проводов
Secondary – вторичный
Secondary circuit – вторичная цепь
Secondary control – вторичное управление
Secondary leads – вторичные зажимы
Secondary relay – вторичное реле
Secondary testing – проверка РЗ вторичным током и
напряжением
Secondary voltage – вторичное напряжение
Secondary winding – вторичная обмотка
Selective protection – селективная защита
Selective time interval – ступень селективности
Selective tripping plan – карта селективности
Selectivity – селективность
Selector switch disconnector – шинный разъединитель
Self-adjusting control – самонастраивающаяся система
управления
Self-contained supply – автономное питание
Self-control – прямое управление
Self excitation – самовозбуждение
Self-extinguishing fault – самоустраняющееся повреждение
(повреждение, которое устраняется само по себе без отключения
объекта)
Self-holding contact – самоудерживающийся контакт
Self inductance – самоиндукция
Self-locking contact – самоудерживающийся контакт
Selfmonitoring – самоконтроль
Self-oscillation – самораскачивание
102
Self-regulation – саморегулирование
Selfsupervision – самоконтроль
Self-synchronization – самосинхронизация
Self-synchronizing – самосинхронизация
Semiautomatic system – полуавтоматическая система
Semiconductor – полупроводник
Semigraphical method – графоаналитический метод
Senior shift engineer – старший диспетчер в смене
Sensitive – чувствительный
Sensitive … protection – чувствительная защита чего-либо
Sensitivity – чувствительность
Sensitivity of a directional element – чувствительность
направленного элемента
Separated windings – раздельные обмотки
Separate network – обособленная сеть
Sequence control – последовательное управление
Serial access – последовательный доступ
Serial communication – последовательный интерфейс
Series capacity – продольная емкостная компенсация
Series compensation – последовательная компенсация
Series connection – последовательное соединение
Setting – установка
Setting current – ток установки
Setting knob – переключатель для регулирования установок
Setting up of actual value – регулируемая установка
Setting value – величина установки
Shield – экран
Shielding case – экранирующий кожух
Shift engineer – диспетчер в смене
Shock current – ударный ток
Shop instructions – заводские инструкции
Short circuit – КЗ
Short circuit and earth – КЗ на землю
Short-circuit between phases – междуфазное КЗ
Short-circuit characteristic – характеристика КЗ
Short-circuit current – ток КЗ
Short-circuit current calculations – расчеты токов КЗ
Short-circuit earth current – ток КЗ на землю
Short-circuit protection – защита от КЗ
103
Short-circuit power – мощность КЗ
Short-circuit through an arc – дуговое КЗ
Short-circuit to earth – КЗ на землю
Shunting – шунтирование
Signal level – уровень сигнала
Signal-to-noise ratio – отношение сигнал-помеха
Signal transmission time – время передачи сигнала
Silent arc – устойчивая дуга
Simplex channel – симплексный канал
Simulation test – испытание на модели
Simulator – моделирующее устройство
Single-acting autoreclosing – однократное АПВ
Single-busbar substation – подстанция с одной системой шин
Single-channel – одноканальный
Single-circuit line – одноцепная ЛЭП
Single conductor – один провод
Single-element relay – одноэлементное реле
Single feeder (radial feeder) – радиальная линия
Single-line diagram – однолинейная схема электрической сети
Single phase automatic reclosing control equipment –
однофазное устройство автоматического повторного включения
Single-phase autoreclosing – однофазное АПВ
Single-phase short circuit – однофазное КЗ
Single-phase transformer – однофазный трансформатор
Single pole automatic reclosing control equipment –
однополюсное устройство повторного включения
Single-pole switch – однополюсный выключатель
Single shot reclosing – однократное АПВ
Single supply – одностороннее питание
Single-three-phase reclosing – комбинированное (одно-трехфазное) АПВ
Single-turn
current
transformer
–
одновитковый
трансформатор тока
Slave-relay – реле-повторитель
Slip – скольжение
Slip frequency – частота скольжения
Slow-operating relay – медленнодействующее реле
Slow-release relay – реле с замедлением на возврат
Slugged – инерционный
104
Smooth variation – плавное изменение
Solar battery – солнечная батарея
Soldered connection – паяное соединение
Soldering – пайка
Solid-state relay – бесконтактное реле
Solid-state switch - полупроводниковый переключатель
Solidly-earthed neutral – глухо заземленная нейтраль
Spare parts – запасные части
Spark capacitor – искрогасительный конденсатор
Spark-quenching circuit – искрогасительная цепь
Specified value – заданная величина
Speeder motor – двигатель регулятора скорости
Speed governor – регулятор скорости
Speed regulator – регулятор частоты вращения
Speed-up – увеличение частоты вращения
Speed-voltage generator – тахогенератор
Split-phase – расщепленная фаза
Split secondary – вторичная обмотка с выведенной средней
точкой
Split the busbars – деление шин
Spring contact – контактная пружина
Spur line – отпайка
Spurious capacitance – паразитная емкость
Spurious opening – ложное отключение
Spurious tripping – ложное отключение
Stability – устойчивость
Stable – устойчивый
Stable conditions – устойчивый режим
Stable oscillation – устойчивые качания
Stage change point – точка изменения ступени РЗ
Stage circuit – каскадная схема
Stage length – длина ступени
Stand by set – резервная установка
Stand-by supply – резервное питание
Star-delta switch – переключение со звезды на треугольник
Star-star connection – соединение звезда-звезда
Starting relay – пусковое реле
Starting situation – пусковой режим
Starting tests – пусковые испытания
105
Start of parallel operation – начало параллельной работы
Start operation (of a relay) – начало работы (реле)
Start-stop control – прерывистое управление
Static compensator – статический компенсатор
Static convertor – статический преобразователь
Static error – статическая ошибка
Static excitation – статическое возбуждение
Station auxiliaries voltage – напряжение собственных нужд
Station under AGC (LFC) – электростанция, участвующая в
АРЧМ
Stator earth fault protection – РЗ от замыканий на землю в
статоре
Stator fault to frame – замыкание статора на корпус
Stator winding – обмотка статора
Steady-state short-circuit current – установившийся ток КЗ
Steady-state stability – статическая устойчивость
Step action – ступенчатое воздействие
Step-by-step method – метод последовательных интервалов
Step-down substation – понижающая подстанция
Step-down transformer – понижающий трансформатор
Step change point – точка изменения ступени
Step length – длина ступени
Stepless control – плавное регулирование
Stepped characteristic – ступенчатая характеристика
Step response – переходная характеристика
Step-up substation – повышающая подстанция
Step-up transformer – повышающий трансформатор
Stray capacitance – паразитная емкость
Stray currents – паразитные (блуждающие) токи
Stub line – шлейф
Subsequent faults – последовательные повреждения
Substation – электрическая подстанция
Substation relay room – помещение релейной защиты
подстанции
Subtransient reactance – сверхпереходный реактанс
Successful reclosing – успешное АПВ
Sudden change in frequency – внезапное изменение частоты
Sudden load variation – внезапное изменение нагрузки
Superconductivity – сверхпроводимость
106
Superimposed current – наложенный ток
Superposition method – метод наложения
Supervising person – начальник смены
Supervision trip circuit – контроль цепи отключения
Supply (a relay) – питание (реле)
Supply interruption – нарушение питания
Supply point – точка питания
Supply voltage – напряжение питания
Supply voltage of auxiliary circuits – напряжение питания
вторичных цепей (собственных нужд)
Susceptance – реактивная проводимость
Sustained fault – устойчивое повреждение
Sustained short-circuit current – устойчивый ток КЗ
Sweep – развертка
Swing blocking – блокировка от качаний
Swinging of conductors – пляска проводов
Switch – переключатель
Switchable busbar – система шин, секционированная
выключателем
Switched busbar circuit-breaker – секционный выключатель
Switch-gear – распределительное устройство
Symmetrical component method – метод симметричных
составляющих
Symmetrical short circuit – симметричное КЗ
Symmetrical voltage – симметричное напряжение
Synchronization – синхронизация
Synchronize – синхронизироваться, происходить одновременно
Synchronizing relay – реле синхронизации
Synchronism – синхронизм
Synchronoscope – синхроноскоп
Synchronous compensator – синхронный компенсатор
Synchronous generator – синхронный генератор
Synchronous motor – синхронный двигатель
Synchronous operation – синхронная работа
Synchronous reactance – синхронный реактанс
Systematic error – систематическая погрешность
System configuration – конфигурация электрической сети
System control – управление энергосистемой
107
System control centre – диспетчерский центр энергосистемы
System diagram – схема системы (электрической сети)
System operational diagram – оперативная схема
электрической сети
T
Тар changing – изменение отпайки на трансформаторе (работа
РПН)
Tapped line (teed line) – магистральная линия
Telecommunication – связь
Telecommunication line – линия связи
Telemetering – телеизмерение
Teleregulation – телерегулирование
Temperature-dependant – зависимый от температуры
Terminal – зажим, терминал
Terminal voltage – напряжение на зажимах
Tertiary winding – третичная обмотка
Thermal generating set – электрогенерирующий агрегат ТЭС
Thermal limit burden – нагрузка вторичной цепи по условию
термической стойкости
Thermal power station – тепловая электростанция
Thermal power unit – энергоблок ТЭС
Thermal relay – тепловое реле
Thermal replica – тепловая модель
Thermocouple – термопара
Third harmonic – третья гармоника
Three-element relay – трехэлементное реле
Three phase automatic reclosing control equipment –
устройство трехфазного АПВ
Three-phase fault – трехфазное повреждение
Three-phase system diagram – схема электрической сети в
трехфазном исполнении
Three-phase transformer – трехфазный трансформатор
Three
windings
transformer
–
трехобмоточный
трансформатор
Threshold (of) sensitivity – порог чувствительности
Threshold value – пороговая величина
Through fault current – сквозной ток повреждения (КЗ)
Thyristor – тиристор
108
Time characteristic – временная зависимость
Time constant – постоянная времени
Time delay – выдержка времени
Time-dependant – зависящий от времени
Time differential – ступень выдержки времени
Time grading – отстройка защит по выдержке времени
срабатывания
Time interval – ступень времени
Time-lag relay – реле времени
Time schedule – график работы
Time to operate – время действия
Timing element – элемент времени
Toggle switch – перекидной переключатель
Total break time – полное время отключения
Total current – суммарный ток
Total loss of load – полный сброс нагрузки
Traction substation – тяговая подстанция
Transducer – датчик
Transductor – трансреактор
Transfer busbar – обходная система шин
Transfer function – передаточная функция
Transfers bars – обходная система шин
Transformation of electricity – трансформация электрической
энергии
Transformer bank – трансформаторная группа
Transformer circuit-breaker – трансформаторный выключатель
Transformer protection – РЗ трансформатора
Transformer ratio – коэффициент трансформации
трансформатора
Transformer substation – трансформаторная подстанция (ТП)
Transformer tap – отпайка трансформатора
Transformer winding – обмотка трансформатора
Transformer with on-load tap changing – трансформатор с
устройством РПН
Transformer with off-load tap changing – трансформатор с
переключением отпаек обмотки без нагрузки
Transformer with regulation in phase – трансформатор с
регулировкой напряжения по фазе
109
Transformer with regulation in quadrature – трансформатор с
регулировкой напряжения по модулю
Transforming station – трансформаторная подстанция
Transient analysis – анализ переходного процесса
Transient fault – неустойчивое повреждение
Transient feedback – гибкая обратная связь
Transient performance – качество переходного процесса
Transient phenomenon – переходный процесс
Transient reactance – переходный реактанс
Transient response – переходная характеристика
Transient short circuit – неустановившееся КЗ
Transient short circuit current – переходный ток КЗ
Transient stability – динамическая устойчивость
Transient state – неустановившийся режим
Transistor – транзистор
Translator
(isolating
transformer)
–
изолирующий
трансформатор
Transmission channel – передающий канал
Transmission data rate – скорость передачи данных
Transmission limit – предел передаваемой мощности
Transmission line capability – пропускная способность ЛЭП
Transmission of electricity – передача электроэнергии
Transmitter – передатчик
Transposition – транспозиция
Transverse
differential
protection
–
поперечная
дифференциальная защита
Traveling wave – бегущая волна
Treed system – радиально-магистральная (разветвленная)
электрическая сеть
Trip – отключить, подать команду на отключение
Trip a circuit breaker – подать команду на отключение
выключателя (применяется в отношении реле)
Trip circuit – цепь отключения
Trip coil – катушка отключения
Trip command – команда отключения
Triple busbar substation – ПС с тремя системами шин
Triple conductor – три провода в фазе
Triple-frequency harmonic – третья гармоника
110
Triple unit (Motor, Pump, Turbine) – встроенный агрегат
(двигатель, насос, турбина)
Tripping relay – отключающее реле
Tripping time – время срабатывания
Trunk line – магистральная ЛЭП
Trunk main – магистральная ЛЭП
Tuned circuit – резонансный контур
Tuning capacitor – подстроечный конденсатор
Tuning indicator – индикатор настройки
Tuning range – диапазон настройки
Turbine governor – регулятор турбины
Turbogenerator – турбогенератор
Turbo-generator set – паротурбинный агрегат
Turn – виток
Turn-to-turn short circuit – междувитковое КЗ
Turn-fault – межвитковое повреждение (КЗ)
Turn-fault protection – защита от межвитковых КЗ
Twin conductor – два провода в фазе
Twisted conductor – скрученный многожильный проводник
(провод)
Twist joint – соединение скруткой
Two-layer winding – двухслойная обмотка
Two-way contact – двухсторонний (перекидной) контакт
Two-way feed – двухстороннее питание
Two-stage relay – двухпозиционное реле
U
Ultra-high voltage – сверхвысокое напряжение
Unattended substation – необслуживаемая подстанция
Unbalance current – ток небаланса
Unbalanced conditions – несимметричный режим
Unbalanced short circuit – несимметричное КЗ
Unblocking – деблокировка (разблокировка)
Underdamping – слабое затухание
Under-excitation – недовозбуждение
Underfrequency load shedding – АЧР
Underfrequency relay – реле защиты от снижения частоты
Underground cable – кабельная линия
111
Underground substation – подземная подстанция
Underground system – кабельная электрическая сеть
Under...relay – реле минимального принципа действия
Underreaching (for a distance protection system) –
сокращенная зона (для систем дистанционной защиты)
Unfaulted phase – неповрежденная фаза
Unidirectional – одного направления
Unidirectional current – ток одного направления
Unimeter – мультиметр
Uninterrupted operation – бесперебойная работа
Uninterruptible
power
supply
–
гарантированное
энергоснабжение
Unload – разгрузка
Unloaded line – ненагруженная ЛЭП
Unmanned – без дежурного персонала
Unmanned substation – необслуживаемая подстанция
Unstable – неустойчивый
Untapped – без отпаек
Unwanted operation (of a protection equipment) –
нежелательное срабатывание (устройства защиты)
Upper harmonics – высшие гармоники
Urban network – городская распределительная сеть
V
Varistor – варистор
V-connection – соединение в открытый треугольник
Vector group (of a transformer) – группа соединения
трансформатора
Voltage – напряжение
Voltage balance – баланс напряжений
Voltage balance relay – дифференциальное реле напряжения
Voltage build-up – нарастание напряжения
Voltage circuit – цепь напряжения
Voltage deviation – отклонение напряжения
Voltage direction – полярность напряжения
Voltage divider – делитель напряжения
Voltage division – деление напряжения
Voltage drop – падение напряжения
Voltage level – ступень напряжения
112
Voltage limiting – ограничение напряжения
Voltage range – диапазон напряжений
Voltage regulator – регулятор напряжения
Voltage relay – реле напряжения
Voltage restrained overcurrent relay – реле МТЗ с
торможением по напряжению
Voltage ripple – пульсация напряжения
Voltage rise – подъем напряжения
Voltage transformer – трансформатор напряжения
Voltage transformer error – погрешность трансформатора
напряжения
Voltage trebling – утроение напряжения
Volt-ampere characteristic – вольтамперная характеристика
(ВТХ)
W
Wall diagram – мнемосхема на диспетчерском щите
Wattage – потребление активной мощности
Watt consumption – потребление активной мощности
Weighting factor – долевой коэффициент
Winding – обмотка
Winding path – направление намотки обмотки
Wire-pilot – проводная связь в дифференциальной защите
Wire-wrap connection – накрутка
Wire wrapping – накрутка
Wiring (secondary wiring) – электропроводка вспомогательных
цепей
Wiring – монтажная схема (монтаж)
Wiring blemish – дефект монтажа
Withdrawal from service – вывод из работы
Working zone – рабочая зона
Wye-delta – звезда-треугольник
Wye-delta connection – соединение звезда-треугольник
Wye-wye – звезда-звезда
Z
Z-connection – соединение зигзагом
Zero crossing – переход через ноль
Zero drift – дрейф нуля
113
Zero error – сдвиг нуля
Zero mark – нулевая отметка
Zero offset – смещение нуля
Zero phase-sequence voltage – напряжение нулевой
последовательности
Zero sequence component – составляющая нулевой
последовательности
Zero sequence current – ток нулевой последовательности
Zero
sequence
impedance
–
импеданс
нулевой
последовательности
Zero sequence voltage relay – реле напряжения нулевой
последовательности
Zone of protection – защитная зона
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Комолова, З. П. Популярная электроника / З. П. Комолова, В. П.
Новоселецкая, Н. В. Новикова. – М.: ВШ, 1988. – 157 с.
2. Бахчисарайцева, М. Э. English for Power Engineering Students / М. Э.
Бахчисарайцева, В. А. Каширина, А. Ф. Антипова. – М.: ВШ, 1983. – 155 с.
114
3. Кабо, П. Д. Popular Science Reader / П. Д. Кабо, С. Н. Фомичева. – М.:
Просвещение, 1983. – 114 с.
4. Четвертакова, М. М. Сборник текстов по электротехнике / М. М.
Четвертакова. – Санкт-Петербург, 1999. – 48 с.
5. Сборник технических текстов на английском языке: учеб. пособие для
втузов / М. А. Беляева [и др. ] Под ред. Н. В. Володина. – М.: Издательство
литературы на иностранных языках, 1959. – 600 с.
ОГЛАВЛЕНИЕ
Предисловие…………………………………………………………
UNIT 1………………………………………………………………..
UNIT 2………………………………………………………………..
UNIT 3………………………………………………………………..
115
3
4
5
8
UNIT 4………………………………………………………………..
UNIT 5………………………………………………………………..
UNIT 6………………………………………………………………..
UNIT 7………………………………………………………………..
UNIT 8………………………………………………………………..
UNIT 9………………………………………………………………..
UNIT 10………………………………..……………………………..
UNIT 11……………………………………..………………………..
UNIT 12……………………………………..………………………..
UNIT 13……………………………………..………………………..
UNIT 14……………………………………..………………………..
UNIT 15……………………………………..………………………..
UNIT 16……………………………………..………………………..
UNIT 17……………………………………..………………………..
UNIT 18……………………………………..………………………..
UNIT 19……………………………………..………………………..
SUPPLEMENTARY TEXTS………………………………..………
Part I……………………………………..……………………….…..
Part II……………………………………..………………….……….
Power engineering dictionary………………………………….……..
Список использованной литературы..……………………………..
116
11
13
14
17
19
21
23
24
26
27
30
33
34
36
38
40
43
43
55
62
114
Ирина Владимировна Алещанова
Наталья Алексеевна Фролова
ПОСОБИЕ ПО ТЕХНИЧЕСКОМУ ПЕРЕВОДУ ДЛЯ НАПРАВЛЕНИЯ
«ЭЛЕКТРОЭНЕРГЕТИКА» (НА МАТЕРИАЛЕ АНГЛИЙСКОГО ЯЗЫКА)
Учебное пособие
Редактор Пчелинцева М. А.
Компьютерная верстка Сарафановой Н. М.
Темплан 2011 г., поз. № 21К.
Подписано в печать 08. 02. 2011 г. Формат 60×84 1/16.
Бумага листовая. Печать офсетная.
Усл. печ. л. 6,74. Уч.-изд. л. 6,36.
Тираж 100 экз. Заказ №
Волгоградский государственный технический университет
400131, г. Волгоград, пр. Ленина, 28, корп. 1.
Отпечатано в КТИ
403874, г. Камышин, ул. Ленина, 5, каб. 4.5
117