* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Young`s Double Slits
Silicon photonics wikipedia , lookup
X-ray fluorescence wikipedia , lookup
Laser beam profiler wikipedia , lookup
Atmospheric optics wikipedia , lookup
Ellipsometry wikipedia , lookup
Optical amplifier wikipedia , lookup
Optical coherence tomography wikipedia , lookup
Optical flat wikipedia , lookup
Magnetic circular dichroism wikipedia , lookup
Confocal microscopy wikipedia , lookup
Optical tweezers wikipedia , lookup
Astronomical spectroscopy wikipedia , lookup
Harold Hopkins (physicist) wikipedia , lookup
3D optical data storage wikipedia , lookup
Retroreflector wikipedia , lookup
Anti-reflective coating wikipedia , lookup
Nonlinear optics wikipedia , lookup
Thomas Young (scientist) wikipedia , lookup
Photonic laser thruster wikipedia , lookup
Diffraction grating wikipedia , lookup
Interferometry wikipedia , lookup
Ultraviolet–visible spectroscopy wikipedia , lookup
Ultrafast laser spectroscopy wikipedia , lookup
Physics 1 – Young’s Double Slits Young’s Double Slits Aims To investigate the wave-like nature of light. To perform quantitative measurements of interference. Part 1: Tutorial question (15mins) Two narrow parallel vertical slits in a screen, at a small distance d apart centre-tocentre, are used to provide equal sources of light of wavelength and a second screen is placed at a large distance R in front of the slits. Prove that: 1.1 the optical path difference at the mth bright interference fringe is given by r2 r1 d sin m, [1.1] where m is an integer; 1.2 the separation between the mth bright fringe and the centre fringe on the screen is given by: y m R . d [1.2] State any assumptions made. 1.3 We observe the distance between any two bright fringes to be 1.0 mm. What is the separation between the slits if the wavelength of light is = 532 nm and the distance to the screen is R = 1.0 m? r1 S1 d y I r2 S2 R Figure 1 1 Physics 1 – Young’s Double Slits Part 2: Observing interference with a laser (20mins) Laser Safety WARNING: IT IS IMPERATIVE THAT YOU READ AND UNDERSTAND THE FOLLOWING INFORMATION BEFORE ATTEMPTING THE EXPERIMENT DETAILED BELOW. IF YOU HAVE ANY QUESTIONS PLEASE CONSULT A LABORATORY DEMONSTRATOR. Operational Hazard – Semiconductor laser diodes The two laser sources you will be using emit green and red visible light. Both are categorised as class 2 sources and thus defined to be eye safe (i.e. the human blink reflex will be sufficient to prevent damaging exposure), having a power output < 1mW. However, you must never look directly into the beam path or stare at the laser output port, and you must never point the laser beam at yourself or anyone else. In this part of the experiment you will determine the spacing of the two slits on the slide from the interference pattern of green light at a known wavelength. Firstly, affix the green laser pen to the clamp stand, it may be useful to use a cable tie to keep the button depressed. Place this at one end of the horizontal track and align the beam so that it is centred on the zero position on the ruled screen at the other end. Now, place the slide saddle on the track in front of the beam, so that a diffraction pattern appears on the screen. Note the positions of the two saddles, and deduce their separation. Measure the separation between adjacent maxima on the ruler screen. 2.1 Knowing that the wavelength of the light is 532nm, and using your results from part 1, calculate the slit separation d. 2.2 Deduce the error on your result using the following equation d y , d y [2.1] where y is the error on your measurement of y. Part 3: Calculating the wavelength of red laser light (15 mins) You will now use your results from part 2 to determine the wavelength of the red laser light and compare it with the values shown on the laser pointer. Replace the green laser pen with the red one and again affix it to the clamp stand. Remove the slide saddle and align the light beam so that it is centred on the zero position. Place the slide saddle back on the track in the same position as before. You should observe a similar diffraction pattern. 2 Physics 1 – Young’s Double Slits 3.1 What is different about the image formed on the screen? Explain why this is the case. Rearrange equation 1.2 to show the dependence of wavelength on maxima separation y. Measure the separation of adjacent maxima. 3.2 Now calculate the wavelength of the red light. Does this compare well with that stated on the laser of 630-680nm? 3.3 Deduce the error on your result using the following equation: 2 d y , d y 2 2 where dand y are the errors on wavelength, slit seperation and maxima seperation respectively. Part 4: Using a diffraction grating (Optional) Replace the double slit grating with a diffarction grating. 4.1 What pattern do you observe? Sketch the pattern. Further work The following questions are related to the topic covered by this experimental tutorial. L60, L61 and L62 from the examples book 3 Physics 1 – Young’s Double Slits Demonstrators' Answers, Hints, Marking Scheme and Equipment List Marking Scheme Section 1.1 1.2 1.3 2.1 2.2 3.1 3.2 3.3 Discretionary mark TOTAL Mark 1 1 1 1 1 1 1 1 2 10 Answers 1.1 For bright fringes there must be constructive interference, so the path difference between r1 and r2 must be an integer number of wavelengths and from Pythagoras the path difference is also equal to d sin. 1.2 1.3 assuming for small angles: sintany/R y d m R mR y d 0.53 mm Part 2 Constructive interference: r2 r1 d sin m; m 0,1,2,... 3.1 nR 7 532 10 9 1.3 d sin n d 0.242 mm y 20 10 3 y 1 Error: d d 0.242 0.01 mm d 0.24 0.01 mm y 20 The wavelength of red light is larger so the seperation between maxima will be reduced. dy Rn 3.2 d y 0.242 10 3 14.5 10 3 675 nm Constructive interference: Rn 1.3 4 3.3 Error: 4 Physics 1 – Young’s Double Slits d y d y 2 2 2 2 1 1 675 24 14.5 675 0.0806 54 nm 675 54 nm since one can read the scale to an accuracy of 1mm. 4.1 Equipment List: Optical track 2 x optical track saddles Ruler screen Double slit slide Green laser pen Red laser pen Clamp stand with boss head Peg or 2 x cable ties 5