* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download document 8772867
Accretion disk wikipedia , lookup
Condensed matter physics wikipedia , lookup
Maxwell's equations wikipedia , lookup
Electromagnetism wikipedia , lookup
Magnetic field wikipedia , lookup
Lorentz force wikipedia , lookup
Neutron magnetic moment wikipedia , lookup
Magnetic monopole wikipedia , lookup
Superconductivity wikipedia , lookup
c John C. Young, July 8, 2010 1 Consider the rectangular waveguide shown below. Figure 1: Rectangular waveguide geometry. 1 Magnetic Current Green’s Function 1.1 Magnetic Field Due to a Magnetic Current The magnetic field due to a Magnetic dipole M = l̂δ(r − r′ ) is given. 1.1.1 Mixed Potential Forumulation The mixed-potential formulation for the magnetic field due to a magnetic current is H[M; r] = −jωF[M; r] − ∇Ψ[M; r] (1) where the electric vector potential is F[M; r] = ZZ S G F r, r′ · M(r′ )dS ′ (2) and the magnetic sclar potential is ZZ qm (r′ )GF r, r′ dS ′ SZ Z ′ −1 = ∇ · M(r′ ) GF ( r, r′ )dS ′ . jω S Ψ[M; r] = (3) (4) Therefore, H[M; r] = −jω ZZ GF S 1 r, r · M(r )dS + ∇ jω ′ ′ ′ ZZ S ′ ∇ · M(r′ ) GΨ ( r, r′ )dS ′ Here, the dyadic Green’s function for the electric vector potential is G F r, r′ = Fx r, r′ x̂ + Fy r, r′ ŷ + Fz r, r′ ẑ (5) (6) c John C. Young, July 8, 2010 2 and Fx ∞ ∞ nπ mπ nπ mπ ε X X ǫmn ′ sin r, r = x sin x′ cos y cos y ′ e−jβmn |z−z | j2ab βmn a a b b (7) n=1 m=0 ∞ ∞ X X mπ nπ nπ mπ ǫmn ′ x cos x′ sin y sin y ′ e−jβmn |z−z | cos βmn a a b b (8) (9) n=0 m=0 nπ nπ mπ mπ ǫmn ′ x cos x′ cos y cos y ′ e−jβmn |z−z | . cos βmn a a b b ′ Fy r, r′ = ε j2ab Fz r, r′ = ε j2ab n=0 m=1 ∞ X ∞ X The Green’s function for the magnetic scalar potential is GΨ r, r′ = Fz r, r′ . (10) In the above, ǫmn = ǫm ǫn , (11) where ǫn = nπ 2 − 1 n=0 2 n= 6 0 (12) and βmn = r k2 − a mπ 2 b , Imagβmn ≤ 0 . (13)