* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download ppt
Electrostatics wikipedia , lookup
Maxwell's equations wikipedia , lookup
Neutron magnetic moment wikipedia , lookup
Ground loop (electricity) wikipedia , lookup
Electromigration wikipedia , lookup
Induction heater wikipedia , lookup
Magnetic nanoparticles wikipedia , lookup
History of electromagnetic theory wikipedia , lookup
Electromagnetism wikipedia , lookup
Electrical resistance and conductance wikipedia , lookup
Alternating current wikipedia , lookup
Earthing system wikipedia , lookup
History of electrochemistry wikipedia , lookup
Magnetic field wikipedia , lookup
Magnetic monopole wikipedia , lookup
Electric machine wikipedia , lookup
Multiferroics wikipedia , lookup
Electricity wikipedia , lookup
Magnetoreception wikipedia , lookup
Superconductivity wikipedia , lookup
Magnetohydrodynamics wikipedia , lookup
Magnetochemistry wikipedia , lookup
Electric current wikipedia , lookup
Friction-plate electromagnetic couplings wikipedia , lookup
Hall effect wikipedia , lookup
Skin effect wikipedia , lookup
Magnetic core wikipedia , lookup
Superconducting magnet wikipedia , lookup
Force between magnets wikipedia , lookup
Lorentz force wikipedia , lookup
Scanning SQUID microscope wikipedia , lookup
Eddy current wikipedia , lookup
Motional EMF FE = -eE x - FB = -evB B - x x x x x x x- x x x - x x - x x x x - E - x x x x x x x x x x x x x v eE = evB E = vB Vind = LE = LvB L x x x x x x x x x x x x x x x x v x x x x x x x x x x x x x x V dt d Fi = LdB Ff = L(d+vdt)B |Vind | = dF/dt = LvdtB/dt = LvB Motional emf As the negative charges accumulate at the base, a net positive charge exists at the upper end of the conductor As a result of this charge separation, an electric field is produced in the conductor Charges build up at the ends of the conductor until the downward magnetic force is balanced by the upward electric force There is a potential difference between the upper and lower ends of the conductor Motional emf, cont The potential difference between the ends of the conductor can be found by •V=BvL • The upper end is at a higher potential than the lower end A potential difference is maintained across the conductor as long as there is motion through the field • If the motion is reversed, the polarity of the potential difference is also reversed Motional emf in a Circuit Assume the moving bar has zero resistance As the bar is pulled to the right with velocity v under the influence of an applied force, F, the free charges experience a magnetic force along the length of the bar This force sets up an induced current because the charges are free to move in the closed path Motional emf in a Circuit, cont The changing magnetic flux through the loop and the corresponding induced emf in the bar result from the change in area of the loop The induced, motional emf, acts like a battery in the circuit Bv Bv and I R Lenz’ Law Revisited – Moving Bar Example As the bar moves to the right, the magnetic flux through the circuit increases with time because the area of the loop increases The induced current must in a direction such that it opposes the change in the external magnetic flux Lenz’ Law, Bar Example, cont The flux due to the external field in increasing into the page The flux due to the induced current must be out of the page Therefore the current must be counterclockwise when the bar moves to the right Lenz’ Law, Bar Example, final The bar is moving toward the left The magnetic flux through the loop is decreasing with time The induced current must be clockwise to to produce its own flux into the page Lenz’ Law, Moving Magnet Example A bar magnet is moved to the right toward a stationary loop of wire (a) • As the magnet moves, the magnetic flux increases with time The induced current produces a flux to the left, so the current is in the direction shown (b) Lenz’ Law, Final Note When applying Lenz’ Law, there are two magnetic fields to consider • The external changing magnetic field that induces the current in the loop • The magnetic field produced by the current in the loop Direction of Induced Current Bar magnet moves through coil Current induced in coil Reverse pole Induced current changes sign A S N B N S v Coil moves past fixed bar magnet C S N D S N Current induced in coil as in (A) Bar magnet stationary inside coil No current induced in coil v v