* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 91.510_ch06 - Computer Science
Genome evolution wikipedia , lookup
Non-coding DNA wikipedia , lookup
Transcriptional regulation wikipedia , lookup
Gene regulatory network wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Molecular evolution wikipedia , lookup
RNA silencing wikipedia , lookup
Promoter (genetics) wikipedia , lookup
Non-coding RNA wikipedia , lookup
Silencer (genetics) wikipedia , lookup
Gene expression wikipedia , lookup
Gene expression profiling wikipedia , lookup
Community fingerprinting wikipedia , lookup
Information Theory, Statistical Measures and Bioinformatics approaches to gene expression Friday’s Class • Sei Hyung Lee will make a presentation on his dissertation proposal at 1pm in this room • Vector Support Clustering • So I will discuss Clustering and other topics Information Theory • Given a probability distribution, Pi, for the letters in an independent and identically distributed (i.i.d.) message, the probability of seeing a particular sequence of letters i, j, k, ..., n is simply Pi Pj Pk···Pn or elog Pi + log Pj + log Pk+ ··· + log Pn Information Theory 2 • The information or surprise of an answer to a question (a message) is inversely proportional to its probability – the smaller the probability, the more surprise or information • Ask a child “Do you like ice cream?” • If the answer is yes, you’re not surprised and the information conveyed is little • If the answer is no, you are surprised – more information has been given with this lower probability answer Information Theory 3 Information H associated with probability p is H(p) = log2 (1/p) 1/p is the information or surprise and log2 (1/p) = # of bits required Information Theory 4 Log-probabilities and their sums represent measures of information. Conversely, information can be thought of as log-probabilities (with the negative sign to make the information increase with increasing values) H(p) = log2 (1/p) = - log2 p Information Theory 5 If we have an i.i.d. with 6 values (a die), or 4 (A, C, T, G) or n values (the distribution is flat) then the probability of any particular symbol is 1/n and the information in any such symbol is then log2 n and this value is also the average If the symbols are not equally probable (not i.d.) we need to weigh the information of each symbol by its probability of occurring. This is Claude Shannon’s Entropy H = Σ pi log2 (1/pi) = - Σ pi log2 pi Information Theory 6 If we have a coin, assuming h and t have equal probabilities. H = - ( (1/2) log2 (1/2) + (1/2) log2 (1/2) ) = - ( (1/2) (-1) + (1/2) (-1) ) = - ( -1) = 1 bit If the coin comes up heads ¾ of the time then the entropy should decrease (we’re more certain of the outcome and there’s less surprise) H = - ( (3/4) log2 (3/4) + (1/4) log2 (1/4) ) = - ( (0.75) (-0.415) + (0.25) (-2) ) = - ( -0.81) = 0.81 bits Information Theory 7 A random DNA source has an entropy of H = - ( (1/4) log2 (1/4) + (1/4) log2 (1/4) + (1/4) log2 (1/4) + (1/4) log2 (1/4) ) = - ( (1/4) (-2) + (1/4) (-2) + (1/4) (-2) + (1/4) (-2)) = - ( -2) = 2 bits A DNA source that emits 45% A and T and 5% G and C has an entropy of H = - ( 2*(0.45) log2 (0.45) + 2*(0.05) log2 (0.05)) = - ( (0.90) (-1.15) + (0.10) (-4.32) ) = - ( - 1.035 – 0.432) = 1.467 bits Natural Logs • Using natural logarithms, the information is expressed in units of nats (a contraction of Natural digits). Bits and nats are easily convertible as follows nats = bits · ln (2) ln 2 or log 2 ≈ 0.693 1/ln 2 ≈ 1.44 • Generalizing, for a given base of the logarithm b log x = log b · logb x • Using logarithms to arbitrary bases, information can be expressed in arbitrary units, not just bits and nats, such that -logbP = -k log P , where 1/k=log b So k is often ignored Shannon’s Entropy • Shannon's entropy, H = Σ pi log2 (1/pi) = - Σ pi log2 pi , is the expected (weighted arithmetic mean) value of log Pi computed over all letters in the alphabet, using weights that are simply the probabilities of the letters themselves, the Pis • The information, H, is expressed in units per letter • Shannon's entropy allows us to compute the expected description length of a message, given an a priori assumption (or knowledge) that the letters in the message will appear with frequencies Pi • If a message is 200 letters in length, 200H is the expected description length for that message • Furthermore, the theory tells us there is no shorter encoding for the message than 200H, if the symbols do indeed appear at the prescribed frequencies • Shannon's entropy thus informs us of the minimum description length, or MDL, for a message Shannon Entropy A DNA source that emits 45% A and T and 5% G and C has an entropy of H = - ( 2*(0.45) log2 (0.45) + 2*(0.05) log2 (0.05)) = - ( (0.90) (-1.15) + (0.10) (-4.32) ) = - ( - 1.035 – 0.432) = 1.467 bits Huffman Entropy (or Encoding) If we build a binary Huffman code (tree) for the same DNA 1 bit would be required to code for G 2 bits to code for T (or vice versa) 3 bits each to code for A and C The "Huffman entropy" in this case is 1*0.45 + 2*0.45 + 3*0.05 + 3*0.05 = 1.65 bits per letter -- which is not quite as efficient as the previous Shannon code Length of Message • The description length of a message when using a Huffman code is expected to be about equal to the Shannon or arithmetic code length • Thus, a Huffman-encoded 200 letter sequence will average about 200H bits in length • For some letters in the alphabet, the Huffman code may be more or less efficient in its use of bits than the Shannon code (and vice versa), but the expected behavior averaged over all letters in the alphabet is the same for both (within one bit) Relative Entropy • Relative entropy, H, is a measure of the expected coding inefficiency per letter, when describing a message with an assumed letter distribution P, when the true distribution is Q. • If a binary Huffman code is used to describe the message, the relative entropy concerns the inefficiency of using a Huffman code built for the wrong distribution • Whereas Shannon's entropy is the expected log-likelihood for a single distribution, relative entropy is the expected logarithm of the likelihood ratio (log-likelihood ratio or LLR) between two distributions. H(Q || P) = Σ Qi log2 (Qi /Pi) The Odds Ratio • The odds ratio Qi / Pi is the relative odds that letter i was chosen from the distribution Q versus P • In computing the relative entropy, the logodds ratios are weighted by Qi • Thus the weighted average is relative to the letter frequencies expected for a message generated with Q H(Q || P) = Σ Qi log2 (Qi /Pi) Interpreting the Log-Odds Ratio • The numerical sign of individual LLRs log(Qi / Pi) LLR > 0 => i was more likely chosen using Q than P LLR = 0 => i was as likely selected using Q as it was using P LLR < 0 => i was more likely chosen using P than Q • Relative entropy is sometimes called the Kullback Leibler distance between the distributions P and Q H(P || Q) ≥ 0 H(P || Q) = 0 iff P = Q H(P || Q) is generally ≠ to H(Q || P) The Role of Relative Entropy • Given a scoring matrix (or scoring vector, in this onedimensional case) and a model sequence generated i.i.d. according to some background distribution, P, we can write a program that finds the maximal scoring segment (MSS) within the sequence (global alignment scoring) • Here the complete, full-length sequence represents one message, while the MSS reported by our program constitutes another • For example, we could create a hydrophobicity scoring matrix that assigns increasingly positive scores to more hydrophobic amino acids, zero score to amphipathic residues, and increasingly negative scores to more hydrophilic residues. (Karlin and Altschul (1990) provide other examples of scoring systems, as well). The Role of Relative Entropy • By searching for the MSS - the "most hydrophobic" segment in this case - we select for a portion of the sequence whose letters exhibit a different, hydrophobic distribution than the random background • By convention, the distribution of letters in the MSS is called the target distribution and is signified here by Q. (Note: some texts may signify the background distribution as Q and the target distribution as P). The Role of Relative Entropy 2 • If the letters in the MSS are described using an optimal Shannon code for the background distribution, we expect a longer description than if a code optimized for the target distribution was used instead • These extra bits -- the extra description length -- tell us the relative odds that the MSS arose by chance from the background distribution rather than the target • Why would we consider a target distribution, Q, when our original sequence was generated from the background distribution, P? • Target frequencies represent the underlying evolutionary model • The biology tells us that – The target frequencies are indeed special – The background and target frequencies are formally related to one another by the scoring system (the scoring matrices don’t actually contain the target frequencies but they are implicit in the score) – The odds of chance occurrence of the MSS are related to its score BLAST Scoring Database similarity searches typically yield high-scoring pairwise sequence alignments such as the following Score = 67 (28.6 bits), Expect = 69., P = 1.0 Identities = 13/33 (39%), Positives = 23/33 (69%) Query: 164 ESLKISQAVHGAFMELSEDGIEMAGSTGVIEDI 196 E+L + Q+ G+ ELSED ++ G +GV+E++ Subjct: 381 ETLTLRQSSFGSKCELSEDFLKKVGKSGVVENL 413 Scores: +++-+-++--++--+++++-++- + +++++++ 514121512161315445632110601643512 • The total score for an alignment (67 in the above case) is simply the sum of pairwise scores • The individual pairwise scores are listed beneath the alignment above (+5 on the left through +2 on the right) Scoring Statistics • Note that some pairs of letters may yield the same score • For example, in the BLOSUM62 matrix used to find the previous alignment, S(S,T) = S(A,S) = S(E,K) = S(T,S) = S(D,N) = +1 • While alignments are usually reported without the individual pairwise scores shown, the statistics of alignment scores depend implicitly on the probabilities of occurrence of the scores, not the letters. • Dependency on the letter frequencies is factored out by the scoring matrix. • We see then that the "message" obtained from a similarity search consists of a sequence of pairwise scores indicated by the high-scoring alignment Karlin-Altschul Statistics 1 If we search two sequences X and Y using a scoring matrix Sij to identify the maximal-scoring segment pair (MSP), and if the following conditions hold 1. the two sequences are i.i.d. and have respective background distributions PX and PY (which may be the same), 2. the two sequences are effectively "long" or infinite and not too dissimilar in length, 3. the expected pairwise score Σ PX(i) PY(j) Sij is negative, 4. a positive score is possible, i.e., PX(i)PY(j)Sij > 0 for some letters i and j, then Karlin-Altschul Statistics 2 • The scores in the scoring matrix are implicitly log-odds scores of the form Sij = log(Qij / (PX(i)PY(j))) / l where Qij is the limiting target distribution of the letter pairs (i,j) in the MSP and l is the unique positive-valued solution to the equation ΣPX(i) PY(j) e l Sij = 1 • The expected frequency of chance occurrence of an MSP with score S or greater is E = K mn e-lS where m and n are the lengths of the two sequences, mn is the size of the search space, and K is a measure of the relative independence of the points in this space in the context of accumulating the MSP score • While the complete sequences X and Y must be i.i.d., the letter pairs comprising the MSP do exhibit an interdependency Karlin-Altschul Statistics 3 • Since gaps are disallowed in the MSP, a pairwise sequence comparison for the MSP is analogous to a linear search for the MSS along the diagonals of a 2d search space. The sum total length of all the diagonals searched is just mn • Another way to express the pairwise scores is: Sij = logb(Qij / (PX(i)PY(j))) Where the log is to some base b and l = loge b, and is often called the scale of the scoring matrix Karlin-Altschul Statistics 4 • • • • The MSP score is the sum of the scores Sij for the aligned pairs of letters in the MSP (the sum of log-odds ratios) The MSP score is then the logb of the odds that an MSP with its score occurs by chance at any given starting location within the random background -- not considering yet how large an area, or how many starting locations, were actually examined in finding the MSP Considering the size of the examined area alone, the expected description length of the MSP (measured in information) is log(K m n) The relative entropy, H, has units of information per length (or letter pair), the expected length of the MSP (measured in letter pairs) is E(L) = log(K m n) / H where H is the relative entropy of the target and background frequencies H = Σ Qij log(Qij / (PX(i) PY(j))) where PX(i) PY(j) is the product frequency expected for letter i paired with j in the background search space; and Qij is the frequency at which we expect to observe i paired with j in the MSP Karlin-Altschul Statistics 5 • • • • By definition, the MSP has the highest observed score. Since this score is expected to occur just once, the (expected) MSP score has an (expected) frequency of occurrence, E, of 1 The appearance of MSPs can be modeled as a Poisson process with characteristic parameter E, as it is possible for multiple, independent segments of the background sequences to achieve the same high score The Poisson "events" are the individual MSPs having the same score S or greater The probability of one or more MSPs having score S or greater is simply one minus the probability that no MSPs appear having score S or greater P = 1 - e-E • Note that in the limit as E approaches 0, P = E; and for values of E or P less than about 0.05, E and P are practically speaking equal Karlin-Altschul Statistics 6 • For convenience in comparing scores from different database searches, which may have been performed with different score matrices and/or different background distributions, we can compute the normalized or adjusted score S' = lS - log K • Expressing the "Karlin-Altschul equation" as a function of the adjusted score, we obtain E = mn e-S' • Note how the search-dependent values for l and K have been factored out of the equation by using adjusted scores • We can therefore assess the relative significance of two alignments found under different conditions, merely by comparing their adjusted scores. To assess their absolute statistical significance, we need only know the size of the search space, mn. Karlin-Altschul Statistics 7 • • • • • • Biological sequences have finite length, as do the MSPs found between them MSPs will tend not to appear near the outer (lower and right) edges of the search space The chance of achieving the highest score of all are reduced in that region because the end of one or both sequences may be reached before a higher score is obtained than might be found elsewhere Effectively, the search space is reduced by the expected length, E(l), for the MSP We can therefore modify the Karlin-Altschul equation to use effective lengths for the sequences compared. m' = m - E(l) and n' = n - E(l) E' = K m' n' e-lS Since m' is less than m and n' is less than n, the edge-corrected E' is less than E, indicating greater statistical significance. Karlin-Altschul Statistics 8 • • • • • • A raw MSP or alignment score is meaningless (uninformative) unless we know the associated value of the scaling parameter l, to a lesser extent K, and the size of the search space Even if the name of the scoring matrix someone used has been told to us (e.g., BLOSUM62), it might be that the matrix they used was scaled differently from the version of the matrix we normally use For instance, a given database search could be performed twice, with the second search using the same scoring matrix as the first's but with all scores multiplied by 100 While the first search's scores will be 100-fold lower, the alignments produced by the two searches will be the same and their significance should rightfully be expected to be the same This is a consequence of the scaling parameter l being 100-fold lower for the second search, so that the product lS is identical for both searches If we did not know two different scoring matrices had been used and hadn't learned the lessons of Karlin-Altschul statistics, we might have been tempted to say that the higher scores from the second search are more significant (at the same time, we might have wondered: if the scores are so different, why are the alignments identical?!) Karlin-Altschul Statistics 9 • Karlin-Altschul statistics suggest we should be careful about drawing conclusions from raw alignment scores • When someone says they used the "BLOSUM62" matrix to obtain a high score, it is possible their matrix values were scaled differently than the BLOSUM62 matrix we have come to know • Generally in our work with different programs, and in communications with other people, we may find "BLOSUM62" refers to the exact same matrix, but this doesn't happen automatically; it only happens through efforts to standardize and avoid confusion • Miscommunication still occasionally happens, and people do sometimes experiment with matrix values and scaling factors, so consider yourself forewarned! • Hopefully you see how the potential for this pitfall further motivates the use of adjusted or normalized scores, as well as P-values and E-values, instead of raw scores Karlin-Altschul Statistics 10 • Statistical interpretations of results often involves weighing a null model against an alternative model • In the case of sequence comparisons and the use of Karlin-Altschul statistics, the two models being weighed are the frequencies with which letters are expected to be paired in unselected, random alignments from the background versus the target frequencies of their pairing in the MSP • Karlin and Altschul tell us when we search for the MSP we are implicitly selecting for alignments with a specific target distribution, Q, defined for seeing letter i paired with letter j, where Qij = PX(i) PY(j) elSij Karlin-Altschul Statistics 11 • We can interpret a probability (or P-value) reported by BLASTP as being a function of the odds that the MSP was sampled from the background distribution versus being sampled from the target distribution • In each case, one considers the MSP to have been created by a random, i.i.d. process • The only question is which of the two distributions was most likely used to generate the MSP score: the background frequencies or the target frequencies? Karlin-Altschul Statistics 12 • • • • If the odds of being sampled from the background are low (i.e., much less than 1), then they are approximately equal to the P-value of the MSP having been created from the background distribution. Low P-values do not necessarily mean the score is biologically significant, only that the MSP was more likely to have been generated from the target distribution, which presumably was chosen on the basis of some interesting biological phenomena (such as multiple alignments of families of protein sequences) Further interpretations, such as the biological significance of an MSP score, are not formally covered by the theory (and are often made with a rosy view of the situation) Even if (biological) sequences are not random according to the conditions required for proper application of Karlin-Altschul statistics, we can still search for high-scoring alignments It may just happen that the results still provide some biological insight, but their statistical significance can not be believed. Even so, if the scoring system and search algorithm are not carefully chosen, the results may be uninformative or irrelevant -- and the software provides no warning. Gene expression is regulated in several basic ways • by region (e.g. brain versus kidney) • in development (e.g. fetal versus adult tissue) • in dynamic response to environmental signals (e.g. immediate-early response genes) • in disease states • by gene activity Page 157 virus bacteria fungi invertebrates rodents human Disease Cell types Development In response to stimuli In mutant or wildtype cells In virus, bacteria, and/or host Organism Gene expression changes measured... Page 158 DNA RNA protein phenotype cDNA Page 159 DNA RNA protein DNA cDNA RNA protein cDNA UniGene SAGE microarray Page 159 DNA RNA protein phenotype cDNA [1] Transcription [2] RNA processing (splicing) [3] RNA export [4] RNA surveillance Page 160 5’ exon 1 3’ intron exon 2 3’ exon 3 5’ intron transcription 5’ 3’ RNA splicing (remove introns) 3’ 5’ polyadenylation 5’ AAAAA 3’ Export to cytoplasm Page 161 Relationship of mRNA to genomic DNA for RBP4 Page 162 Analysis of gene expression in cDNA libraries A fundamental approach to studying gene expression is through cDNA libraries. • Isolate RNA (always from a specific organism, region, and time point) insert • Convert RNA to complementary DNA • Subclone into a vector vector • Sequence the cDNA inserts. These are expressed sequence tags (ESTs) Page 162-163 UniGene: unique genes via ESTs • Find UniGene at NCBI: www.ncbi.nlm.nih.gov/UniGene • UniGene clusters contain many ESTs • UniGene data come from many cDNA libraries. Thus, when you look up a gene in UniGene you get information on its abundance and its regional distribution. Page 164 Cluster sizes in UniGene This is a gene with 1 EST associated; the cluster size is 1 Page 164 Cluster sizes in UniGene This is a gene with 10 ESTs associated; the cluster size is 10 Page 164 Cluster sizes in UniGene Cluster size Number of clusters 1 34,000 2 14,000 3-4 15,000 5-8 10,000 9-16 6,000 17-32 4,000 500-1000 500 2000-4000 50 8000-16,000 3 >16,000 1 Page 164 Ten largest UniGene clusters (10/02) Cluster size 25,232 14,277 14,231 12,749 10,649 10,596 10,290 9,987 9,667 9,058 Gene eukary. translation EF (Hs.181165) GAPDH (Hs.169476) ubiquitin (Ta.9227) actin, gamma 1 (Hs.14376) euk transl EF (Mm.196614) ribosomal prot. S2 (Hs.356360) hemoglobin, beta (Mm.30266) mRNA, placental villi (Hs.356428) actin, beta (Hs.288061) 40S ribosomal prot. S18 (Dr.2984) Page 165 Digital Differential Display (DDD) in UniGene • UniGene clusters contain many ESTs • UniGene data come from many cDNA libraries • Libraries can be compared electronically Page 165 Page 166 Page 166 Page 166 UniGene brain libraries UniGene lung libraries Page 167 Page 167 CamKII up-regulated in brain n-sec1 up-regulated in brain surfactant upregulated in lung Page 167 Fisher’s Exact Test: deriving a p value Gene 1 Pool A g1A All other genes total NA-g1A NA NB Pool B g1B NB-g1B total c = g1A + g1B C = (NA-g1A) + (NB-g1B) Page 167 Pitfalls in interpreting cDNA library data • bias in library construction • variable depth of sequencing • library normalization • error rate in sequencing • contamination (chimeric sequences) Pages 166-168 Page 168-169 Serial analysis of gene expression (SAGE) • 9 to 11 base “tags” correspond to genes • measure of gene expression in different biological samples • SAGE tags can be compared electronically Page 169 SAGE tags are mapped to UniGene clusters Tag 1 Tag 1 Tag 2 Tag n Cluster 1 Cluster 2 Cluster 3 Cluster 1 Page 169 Page 171 Page 171 Page 172 Page 173 Page 174 Page 175 Page 175 Microarrays: tools for gene expression A microarray is a solid support (such as a membrane or glass microscope slide) on which DNA of known sequence is deposited in a grid-like array. RNA is isolated from matched samples of interest. The RNA is typically converted to cDNA, labeled with fluorescence (or radioactivity), then hybridized to microarrays in order to measure the expression levels of thousands of genes. Page 173 Questions addressed using microarrays • Wildtype versus mutant • Cultured cells +/- drug • Physiological states (hibernation, cell polarity formation) • Normal versus diseased tissue (cancer, autism) Page 173 Organisms represented on microarrays • metazoans: human, mouse, rat, worm, insect • fungi: yeast • plants: Arabidopsis • other: bacteria, viruses Advantages of microarray experiments Fast Data on 15,000 genes in 1-4 weeks Comprehensive Entire yeast genome on a chip Flexible • As more genomes are sequenced, more arrays can be made. • Custom arrays can be made to represent genes of interest You can submit RNA samples to a core facility for analysis Easy Cheap? Chip representing 15,000 genes for $350; robotic spotter/scanner cost $100,000 Page 175 Disadvantages of microarray experiments Cost Many researchers can’t afford to do appropriate controls, replicates RNA The final product of gene expression is protein significance (see pages 174-176 for references) Quality control Impossible to assess elements on array surface Artifacts with image analysis Artifacts with data analysis Page 176 Sample acquisition RNA: purify, label Data acquisition Microarray: hybridize, wash, image Data analysis Data confirmation Biological insight Page 176 Stage 1: Experimental design [1] Biological samples: technical and biological replicates [2] RNA extraction, conversion, labeling, hybridization [3] Arrangement of array elements on a surface Page 177 Sample 1 Sample 2 Sample 3 Page 177 Samples 1,2 Samples 1,3 Sample 1, pool Sample 2, pool Samples 2,3 Samples 2,1: switch dyes Page 177 Stage 2: RNA and probe preparation For Affymetrix chips, need total RNA (about 10 ug) Confirm purity by running agarose gel Measure a260/a280 to confirm purity, quantity Page 178 Basic sciences Affymetrix core http://microarray.mbg.jhmi.edu/ Johns Hopkins Oncology Center Microarray Core http://www.hopkinsmedicine.org/microarray/ Johns Hopkins University NIDDK Gene Profiling Center http://www.hopkinsmedicine.org/ nephrology/microarray/ The Hopkins Expressionists http://astor.som.jhmi.edu/hex/ Gene expression methodology seminar series http://astor.som.jhmi.edu/hex/gem.html Stage 3: hybridization to DNA arrays The array consists of cDNA or oligonucleotides Oligonucleotides can be deposited by photolithography The sample is converted to cRNA or cDNA Page 178-179 Microarrays: array surface Page 179 Microarrays: robotic spotters See Nature Genetics microarray supplement Stage 4: Image analysis RNA expression levels are quantitated Fluorescence intensity is measured with a scanner, or radioactivity with a phosphorimager Page 180 Differential Gene Expression on a cDNA Microarray Control Rett a B Crystallin is over-expressed in Rett Syndrome Page 180 Page 181 Page 181 Page 181 Stage 5: Data analysis This is the subject of Wednesday’s class • How can arrays be compared? • Which genes are regulated? • Are differences authentic? • What are the criteria for statistical significance? • Are there meaningful patterns in the data (such as groups)? Page 180 Microarray data analysis preprocessing inferential statistics exploratory statistics Page 180 Microarray data analysis preprocessing global normalization local normalization scatter plots inferential statistics t-tests exploratory statistics clustering Page 180 Matrix of genes versus samples Metric (define distance) principal components analysis clustering Trees (hierarchical, k-means) supervised, unsupervised analyses selforganizing maps Page 180 Stage 6: Biological confirmation Microarray experiments can be thought of as “hypothesis-generating” experiments. The differential up- or down-regulation of specific genes can be measured using independent assays such as -- Northern blots -- polymerase chain reaction (RT-PCR) -- in situ hybridization Page 182 Stage 7: Microarray databases There are two main repositories: Gene expression omnibus (GEO) at NCBI ArrayExpress at the European Bioinformatics Institute (EBI) See the URLs on page 184 Page 182 Gene expression omnibus (GEO) NCBI repository for gene expression data http://www.dnachip.org Page 183 Microarrays: web resources • Many links on Leming Shi’s page: http://www.gene-chips.com • Stanford Microarray Database http://www.dnachip.org • links at http://pevsnerlab.kennedykrieger.org/ Database Referencing of Array Genes Online (DRAGON) Database Referencing of Array Genes Online (DRAGON) Credit: Christopher Bouton Carlo Colantuoni George Henry Paste accession numbers into DRAGON here DRAGON relates genes to KEGG pathways