Download PowerPoint - Models of the Atom

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Livermorium wikipedia , lookup

Oganesson wikipedia , lookup

Dubnium wikipedia , lookup

Periodic table wikipedia , lookup

Chemical element wikipedia , lookup

Tennessine wikipedia , lookup

Isotope wikipedia , lookup

Extended periodic table wikipedia , lookup

Ununennium wikipedia , lookup

Unbinilium wikipedia , lookup

History of molecular theory wikipedia , lookup

Transcript
Models of the Atom
a Historical Perspective
simple atom structure
atomic history song
Early Greek Theories
• 400 B.C. - Democritus thought matter
could not be divided indefinitely.
• This led to the idea of atoms in a void.
fire
Democritus
earth
Aristotle
air
water
• 350 B.C - Aristotle modified an earlier
theory that matter was made of four
“elements”: earth, fire, water, air.
• Aristotle was wrong. However, his
theory persisted for 2000 years.
John Dalton
• 1800 -Dalton proposed a modern atomic model
based on experimentation not on pure reason.
•
•
•
•
All matter is made of atoms.
Atoms of an element are identical.
Each element has different atoms.
Atoms of different elements combine
in constant ratios to form compounds.
• Atoms are rearranged in reactions.
• His ideas account for the law of conservation of
mass (atoms are neither created nor destroyed)
and the law of constant composition (elements
combine in fixed ratios).
Adding Electrons to the Model
Materials, when rubbed, can develop a charge
difference. This electricity is called “cathode rays”
when passed through an evacuated tube (movie).
These rays have a small mass and are negative.
Thompson noted that these negative subatomic
particles were a fundamental part of all atoms.
1) Dalton’s “Billiard ball” model (1800-1900)
Atoms are solid and indivisible.
2) Thompson “Plum pudding” model (1900)
Negative electrons in a positive framework.
3) The Rutherford model (around 1910)
Atoms are mostly empty space.
Negative electrons orbit a positive nucleus.
Ernest Rutherford (movie1, movie2)
• Rutherford shot alpha () particles at gold foil.
Zinc sulfide screen
Thin gold foil
Lead block
Radioactive
substance path of invisible
-particles
Most particles passed through.
So, atoms are mostly empty.
Some positive -particles
deflected or bounced back!
Thus, a “nucleus” is positive &
holds most of an atom’s mass.
Bohr’s model (movie)
• Electrons orbit the nucleus in “shells.”
• Electrons can be bumped up to a
higher shell if hit by an electron or a
photon of light.
Bohr’s model
• There are 2 types of spectra: continuous spectra
and line spectra. It’s when electrons fall back down
that they release a photon.
• These jumps down from “shell” to “shell” account
for the line spectra seen through spectroscopes
(and the colors of neon lights and fireworks).
sun
H
He
Hg
U
Schrödinger and Heisenberg
X
• Quantum mechanical model – electrons are not
circling the nucleus like planets, but can be found
somewhere in a ‘cloud’ of energy (Bohr’s ‘shells’ =
‘orbitals’) (movie)
• You can never know exactly where an electron is,
but you can predict the orbital using probability
(Heisenberg’s Uncertainty Principle).
• Different energy clouds have different shapes.
Models of the Atom Review
400 BC
350 BC
Democritus
Aristotle
‘atom’ = ‘indivisible’
earth, air, fire, water
1800
Dalton
Atomic Theory, Billiard Ball Model
1900
Thompson
1910
Rutherford
electron, cathode ray tube,
Plum Pudding Model
nucleus, gold foil experiment
1913
1930
Bohr
Electron Shell (planetary) Model
Schrödinger and Electron Cloud Model
Heisenberg
Timeline of Atomic Structure
atomic history song
Atomic numbers, Mass numbers
• There are 3 types of subatomic particles. We
already know about electrons (e–) & protons (p+).
Neutrons (n0) were also shown to exist (1930s).
• They have: no charge, a mass similar to protons
• Elements are often symbolized with their mass
16
number and atomic number
E.g. Oxygen: 8 O
• These values are given on the periodic table.
• For now, round the mass # to a whole number.
• These numbers tell you a lot about atoms.
# of protons = # of electrons = atomic number
# of neutrons = mass number – atomic number
• Calculate # of e–, n0, p+ for Ca, Ar, and Br.
Atomic
Mass
p+
n0
e–
Ca
20
40
20
20
20
Ar
18
40
18
22
18
Br
35
80
35
45
35
Bohr - Rutherford diagrams
• Putting all this together, we get B-R diagrams
• To draw them you must know the # of protons,
neutrons, and electrons (2,8,8,2 filling order)
• Draw protons (p+), (n0) in circle (i.e. “nucleus”)
• Draw electrons around in shells
He
Li
Li shorthand
p+
2
2 n0
p+
3
4 n0
3 p+
4 n0
2e– 1e–
Draw Be, B, Al and shorthand diagrams for O, Na
Be
B
Al
4 p+
5
n°
O
5 p+
6
n°
13 p+
14
n°
Na
8 p+ 2e– 6e–
8
n°
11 p+ 2e– 8e– 1e–
12
n°
Isotopes and Radioisotopes
• Atoms of the same element that have different
numbers of neutrons are called isotopes.
• Due to isotopes, mass #s are not round #s.
• Li (6.9) is made up of both 6Li and 7Li.
• Often, at least one isotope is unstable.
• It breaks down, releasing radioactivity.
• These types of isotopes are called
radioisotopes
Q- Sometimes an isotope is written without its
atomic number - e.g. 35S (or S-35). Why?
Q- Draw B-R diagrams for the two Li isotopes.
A- The atomic # of an element doesn’t change
Although the number of neutrons can vary,
6Li
7Li
3 p+
3 n0
2e– 1e–
3 p+
4 n0
2e– 1e–
For more lessons, visit
www.chalkbored.com