* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Slide 1
Butyric acid wikipedia , lookup
Light-dependent reactions wikipedia , lookup
Microbial metabolism wikipedia , lookup
Fatty acid metabolism wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Oxidative phosphorylation wikipedia , lookup
Biochemistry wikipedia , lookup
Basal metabolic rate wikipedia , lookup
Adenosine triphosphate wikipedia , lookup
Aerobic & Anaerobic Metabolism in Muscles Objectives • Recognize the importance of ATP as energy source in skeletal muscle. • Understand how skeletal muscles derive and utilize ATP for energy. • Differentiate between energy metabolism in red and white muscle fibers. ATP ATP or adenosine triphosphate is the energy currency used by our body everyday to perform a number of tasks: •Maintain body temperature •Repair damaged cells •Digestion of food •Mechanical work – movement ATP ↔ ADP + Energy ATP • ATP is the most important form of chemical energy stored in cells • Breakdown of ATP into ADP+PO4 releases energy. • Muscles typically store limited amounts of ATP – enough to power 4-6s of activity • So resting muscles must have energy stored in other ways. Systems of generation of ATP 1- ATP-Creatine Phosphate system 2- Glycolytic system 3- Oxidative system The process that facilitates muscular contraction is entirely dependent on body’s ability to provide & rapidly replenish ATP INTERACTION OF ENERGY SYSTEMS Immediate Short-term Long-term % Capacity of Energy System 100% Energy Transfer Systems and Exercise Anaerobic Glycolysis Aerobic Energy System ATP – Creatine Phosphate 10 sec 30 sec 2 min Exercise Time 5+ min Energy systems for muscular exercise Energy Systems Immediate: ATP-CP (ATP & creatine phosphate) Short Term: Glycolytic (Glycogen-Lactic Acid) Long Term: Oxidative Mole of ATP/min Time to Fatigue 4 5 - 10 sec 2.5 1 - 2 min 1 Unlimited time Energy requirements • The three energy systems often operate simultaneously during physical activity. • Relative contribution of each system to total energy requirement differs depending on exercise intensity & duration. • Magnitude of energy from anaerobic sources depends on person’s capacity and tolerance for lactic acid accumulation (Athletes are trained so that they will have better tolerance for lactic acid). • As exercise intensity diminishes & duration extends beyond 4 minutes, energy more dependent on aerobic metabolism Aerobic Vs. Anaerobic sources of energy Aerobic Requires oxygen Anaerobic does not require oxygen mainly fatty acids, then carbohydrate Source of energy: ONLY Carbohydrate (anaerobic glycolysis) End Products: CO2, H2O & ATP End Products: Lactate & ATP Source of energy: What factors contribute to muscle fatigue? Muscle Fatigue Fatigued muscle no longer contracts due to: 1- Accumulation of lactic acid (low pH of sarcoplasm) 2- Exhaustion of energy resources ( ADP & ATP) 3- Ionic imbalance: How would a fatigued muscle be able again to contract ? Recovery period: begins immediately after activity ends Oxygen debt (excess post-exercise oxygen consumption) i.e. the amount of oxygen required during resting period to restore muscle to normal conditions What are the mechanisms by which muscle fibers obtain energy to power contractions? Muscles and fiber types White muscle : (glycolytic) mostly fast fibers pale (e.g. chicken breast) Red muscle: (oxidative) mostly slow fibers dark (e.g. chicken legs) Most human muscles are: Mixed fibers pink Fast Vs. Slow Fibers Type I Type II Slow fibers • • • • • • Abundant mitochondria Extensive capillary supply High concentrations of myoglobin Can contract for long periods of time Fatigue resistant Obtain their ATP mainly from fatty acids oxidation, TCA cycle & ETC (oxidative phosphorylation) Fast fibers • Large glycogen reserves • Relatively few mitochondria • Produce rapid, powerful contractions of short duration • Easily fatigued • Obtain their ATP mainly from anaerobic glycolysis ENERGY REQUIREMENTS AND SOURCE OF ENERGY FOR SKELETAL MUSCLE ( Resting vs. Working) ATP use in the resting muscle cell During periods of muscular rest ATP is required for: 1- Glycogen synthesis (glycogenesis) i.e. storage form of glucose to be used during muscular exercise 2- Creatine phosphate production i.e. energy storage compound to be used at the beginning of muscular contraction Source of ATP in resting muscle fibers • Resting muscle fibers takes up free fatty acids from blood. • Fatty acids are oxidized (in the mitochondria) to produce acetyl CoA & molecules of NADH & FADH2 • Acetyl CoA will then enter the citric acid cycle (in the mitochondria) ATP, NADH, FADH2 & CO2 • NADH & FADH2 will enter the electron transport chain. synthesis of ATP RESTING MUSCLE FIBERS METABOLISM Figure 10–20a ATP sources in working muscle • At the beginning of exercise, muscle fibers immediately use stored ATP • For the next 15 seconds, muscle fibers turn to the creatine phosphate. This system dominates in events such as the 100m dash or lifting weights. ATP sources in working muscle cont. • After the phosphagen system is depleted, the process of anaerobic glycolysis can maintain ATP supply for about 45-60s. Glycogen stored in muscles Glucose 2 pyruvic acid + 2 ATPs 2 Pyruvic acid 2 lactic acid Lactic acid diffuses out of muscles blood liver Glucose (by gluconeogenesis) blood muscles * It usually takes a little time for the respiratory and cardiovascular systems to catch up with the muscles and supply O2 for aerobic metabolism. WORKING MUSCLE FIBERS METABOLISM Figure 10–20c ATP sources in working muscle cont. Anaerobic metabolism is inefficient: 1- Large amounts of glucose are used for very small ATP returns. 2- Lactic acid is produced leading to muscle fatigue Type of sports uses anaerobic metabolism? Sports that requires bursts of speed and activity e.g. basketball. ATP sources in working muscle cont. • Aerobic metabolism Occurs when the respiratory & cardiovascular systems have “caught up with” the working muscles. • During rest and light to moderate exercise, aerobic metabolism contributes 95% of the necessary ATP. • Compounds which can be aerobically metabolized include: Fatty acids, pyruvic acid (made via glycolysis) & amino acids. WORKING MUSCLE FIBERS METABOLISM The Cori cycle & The glucose-alanine cycle The Cori cycle • Liver converts lactate into glucose via gluconeogenesis • The newly formed glucose is transported to muscle to be used for energy again The glucose-alanine cycle • Muscles produce: 1- Pyruvate from glycolysis during exercise 2- NH2 produced from normal protein degradation Pyruvate + NH2 Alanine • Alanine is transported through the blood to liver • Liver converts alanine back to pyruvate Alanine – NH2 = Pyruvate • Pyruvate is converted to glucose (gluconeogenesis). • Glucose is transported to muscle to be used for energy again. • Liver converts NH2 to urea for excretion (urea cycle)