* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Document
Present value wikipedia , lookup
Private equity wikipedia , lookup
Securitization wikipedia , lookup
Investment management wikipedia , lookup
Private equity secondary market wikipedia , lookup
Greeks (finance) wikipedia , lookup
Household debt wikipedia , lookup
Stock selection criterion wikipedia , lookup
Mark-to-market accounting wikipedia , lookup
Investment fund wikipedia , lookup
Global saving glut wikipedia , lookup
Early history of private equity wikipedia , lookup
Business valuation wikipedia , lookup
Systemic risk wikipedia , lookup
Private equity in the 1980s wikipedia , lookup
Systemically important financial institution wikipedia , lookup
Financialization wikipedia , lookup
Financial crisis wikipedia , lookup
A Macroeconomic Model with a Financial Sector Markus K. Brunnermeier and Yuliy Sannikov Motivation • Current financial turmoil – Spirals and adverse feedback loops – Spillovers • Across financial institutions • To real economy • Current macro approach – Representative agent analysis ignores • wealth distribution (including leveraged lending) • spillovers (externalities) and hence, • financial stability – Steady-state log-linearization ignore many dynamic effects (like precautionary hoarding due to higher volatility). 3 Modeling financial frictions • Central idea: heterogeneous agents • have special skills/more productive Bernanke-Gertler-Gilchrist, He-Krishnamurthy, Kiyotaki-Moore • less risk-averse Geanakoplos, Adrian-Shin, Garleanu-Pedersen • more optimistic Geanakoplos type 1: financially constrained type 2: unlevered 4 Modeling financial frictions • Central idea: heterogeneous agents • have special skills/more productive Bernanke-Gertler-Gilchrist, He-Krishnamurthy, Kiyotaki-Moore • less risk-averse Geanakoplos, Adrian-Shin, Garleanu-Pedersen • more optimistic Geanakoplos type 1: financially constrained capital capital financing inside equity financing inside equity type 2: unlevered type 3: intermediary Debt Equity Diamond (1984) 5 Modeling financial frictions • Central idea: heterogeneous agents • have special skills/more productive Bernanke-Gertler-Gilchrist, He-Krishnamurthy, Kiyotaki-Moore • less risk-averse Geanakoplos, Adrian-Shin, Garleanu-Pedersen • more optimistic Geanakoplos type 1: financially constrained type 2: unlevered • Amplification (e.g. Brunnermeier-Pedersen) • Shocks affect the distribution of assets between agents of types 1 and 2, total output Fire sales shock to net worth Loss of Precaution + tighter capital margins volatility price 6 Modeling financial frictions • Central idea: heterogeneous agents • have special skills/more productive Bernanke-Gertler-Gilchrist, He-Krishnamurthy, Kiyotaki-Moore • less risk-averse Geanakoplos, Adrian-Shin, Garleanu-Pedersen • more optimistic Geanakoplos type 1: financially constrained type 2: unlevered • Amplification (e.g. Brunnermeier-Pedersen) Fire sales • Shocks affect the distribution of assets between agents of types 1 and 2, total output But… shock to net worth Existing models study only steady-state dynamics or local dynamics two-three period models Loss of Precaution + tighter capital margins volatility price 7 Preview of results 1. Unified model, replicates dynamics near steady state (e.g. Bernanke-Gertler-Gilchrist) prices expert net worth volatility … but unstable dynamics away from steady state due to (nonlinear) liquidity spirals 2. Welfare: Fire-sale externalities within financial sector, externalities b/w financial sector and real economy… – – When levering up, institutions ignore that their fire-sales depress prices for others Inefficient pecuniary externality in incomplete market setting 3. Securitization can lead to excessive leverage Overview • Start with simple model • Show non-linearities in equilibrium • Add households, capital producers and direct investment to show externalities • Add idiosyncratic shocks to show effects of securitization 9 Model: production of output and capital • Experts hold capital, which produces output yt = a k t • Investment of ι(g) kt makes capital grow at rate g • δ: expert depreciation ι(-δ) = 0 • Liquidation value: ι’(-∞) = a/(r + δ*), δ* > δ Household discount rate Household depreciation 10 Model: production of output and capital • Experts hold capital, which produces output yt = a k t • Investment of ι(g) kt makes capital grow at rate g • δ: expert depreciation ι(-δ) = 0 • Liquidation value: ι’(-∞) = a/(r + δ*), δ* > δ Household discount rate • Holding capital is risky Household depreciation Brownian macro shock dkt = g kt dt + kt dZt • ρ ≥ r: expert discount rate (may “pay out” too much) 11 Financing through experts • Agency problem: experts can increase depreciation/cause losses • Get benefit b per unit of capital Assets Liabilities Experts borrow and may unload some risk dt = ktipt – et ktipt Inside nt = αtet Outside (1-αt)et et – Assume: effort, kti not contractible, but market value of assets ptkti is – Incentive constraint b - t pt ≤ 0 t b/pt - Solvency constraint: debt holders liquidate when ktpt drops to dt - Expert capital depends on aggregate risk, amplified through prices - Later: contracting on aggregate risk separately 12 Balance sheets • For simplicity, take α = 1 for most of this talk Assets ptkt Liabilities Debt dt dpt= tp dt+tp dZt dkt = gkt dt+kt dZt Equity = net worth nt = ptkt - dt d(ktpt) = kt (g pt + tp + tp) dt + kt (pt + tp) dZt ddt = (r dt - a kt + ι(g) kt) dt - dct 13 Evolution of balance sheets – Asset side – long maturity d(ktpt) = kt (g pt + tp + tp)dt + kt (pt + tp)dZt – Liability side 1. Debt – overnight maturity ddt = (r dt - a kt + ι(g) kt) dt - dct 2. Equity dnt = d(ktpt) - ddt = rnt + kt [(a-ι(g)-(r-g)pt+tp+tp)dt+(pt+tp)dZt] -dct 14 Equilibrium • • • • • Aggregate: Nt, Kt State variable t = Nt/Kt Price p(t) Expert value function f(t)nt Bellman equation f(t)nt = maxk,g,c E[dc+d(f(t)nt)] = maxk,g,c {dct+μtfnt + f(t) (rnt + kt(a-ι(g)-(r-g)pt+tp+tp)) + σtfkt(pt+tp)} FOC: ι’(g) = pt, a-ι(g)-(r-g)pt+tp+tp = - σtf/f(t) (pt+tp) dct = 0 unless f(t)=1 (risk premium) * pt Bellman equation: ( - r) f(t) =μtf 15 Ito’s lemma: tp = tη p’ + ½(tη)2p’’ differential equations Stochastic Discount Factor • Experts’ SDF: m0,t = e-ρt f(ηt)/f(η0) time preference agency constraint • Households’ SDF: m0,tHH= e-rt – Note that m0,t =/ m0,tHH, since δ*> δ Equilibrium 17 Equilibrium 18 Full vs. steady-state dynamics • Log-linearized impulse response functions prices expert net worth volatility time • Stationary distribution around steady-state ηt • • But.. below steady state system gets unstable, volatility Liquidity spiral System dynamics and instabilities Fire sales • Volatility effects – Macro shocks Sensitivity of price to ηt tp Zt-shock on kt p' (t ) ( pt t ) . 1 p' (t ) Loss of capital Precaution + tighter margins tp pt amplification – Higher volatility exacerbates precautionary hoarding motive, amplifying price drops – Outside equity shrinks (+deleveraging) • Dynamical system spends most time near steady state, 20 but has occasional volatile destructive episodes Asset pricing (time-series) • Predictability – For low η values price is (temporarily) depressed – Price-earnings ratio predicts future prices • Current earnings: ak0 • Current price: p0k0 =E0[e-ρt f(ηt)/f(η0) (ptkt+divt)] • Excess volatility – Volatility of ktpt per dollar is σ + σtp/pt – Cash flow volatility amplified by SDF movements • Stochastic volatility – See ση plot Asset pricing (cross section) • Correlation increases with σp – Extend model to many types j of capital dkj/kj = g dt + σ dz + σ' dzj aggregate uncorrelated shock shock – Experts hold diversified portfolios • Equilibrium looks as before, but • Volatility of ptkt is σ + σp + σ’ • For uncorrelated zj and zl correlation (ptjktj, ptlktl) is (σ + σp)/(σ + σp + σ’) which is increasing in σp Externalities so far there are no externalities… Proposition. The competitive equilibrium in this economy is equivalent to the optimal policy by a monopolist expert. Sketch of proof. (1) Write Bellman equation for monopolist. (2) Define price pt = ι’(g). (3) Show that prices etc. are as in competitive eq. Intuition: In competitive equilibrium experts do affect prices by their choices (compensation and investment), but they are isolated from prices because they don’t trade given equilibrium prices. 23 Optimal payout policy of monopolist Debt dDt = (rDt - a Kt + ι(g) Kt) dt – dCt, take ρ > r Solvency constraint: Dt ≤ LKt Value function h(ωt)Kt where ωt = -Dt/Kt Bellman equation… 24 Modification 1: add labor sector • Fixed labor supply L • Production function a’ Kt kt1- lt Workers get wages wt = a’ Kt L-1 Experts get ak = (1 - ) a’ L k Worker welfare depends on Kt Experts do not take that into account when choosing leverage (investment and payout decisions) • Household value function… • • • • 25 Externalities with households 26 Modification 2: speculative households • So far fixed liquidation value at a/(r + δ*)… now households can sell back to experts – Break even for HH financing cost earnings Capital gains/losses, E[d(ktpt)] a- rpt - δ*pt + tp+ tp ≤ 0, equality when experts hold fraction ψt < 1 of assets – depreciation rate is δ* > δ – pt ≥ a/(r + δ*) • In equilibrium households pick up assets when financial sector suffers losses, i.e. ηt becomes small • Fire sale externalities (within financial sector) – when levering up, experts hurt prices that other experts can sell to households in the event of a crisis 27 Equilibrium when households provide liquidity support 28 Modification 3: Idiosyncratic losses dkti = g kti dt + kti dZt + kti dJti Jti is an idiosyncratic compensated Poisson loss process, recovery distribution F and intensity λ(σtp) Vt = ktpt drops below Dt, costly state verification by debt Review: costly state verification • Developed by Townsend (1979), used in Diamond (1984), Bernanke-Gertler-Gilchrist • Time 0: principal provides funding I to agent • Time 1: agent’s profit y ~ F[0, y*] is his private information but principal can verify y at cost • Optimal contract (with deterministic verification) is debt with face value D: agent reports y truthfully and pays D if y ≥ D, triggers default and pays y if y < D • In our context: expert can cause losses (reduce Vt for private benefit); debtholders verify if Vt falls below Dt Modification 3: Idiosyncratic losses dkti = g kti dt + kti dZt + kti dJti Jti is an idiosyncratic compensated Poisson loss process, recovery distribution F and intensity λ(σtp) V = ktpt drops below Dt, costly state verification by debt • Debtholders’ loss rate ( p )V ( VD x)dF(x) D V 0 • Verification cost rate Asset D V ( p )V cxdF( x) 0 C ( VD ) • Leverage bounded not only by precautionary motive, but also the cost of borrowing Liabilities Dt = ktpt – Et Vt = ktpt Equity Equilibrium • Experts borrow at rate larger than r • Rate depends on leverage, price volatility • dt = diffusion process (without jumps) because losses cancel out in aggregate 32 Securitization • Experts can contract on shocks Z and L directly among each other, contracting costs are zero • In principle, good thing (avoid verification costs) • Equilibrium – experts fully hedge idiosyncratic risks – experts hold their share (do not hedge) aggregate risk Z, market price of risk depends on tf (pt + tp) – with securitization, experts lever up more (as a function of t) and pay themselves sooner – financial system becomes less stable 33 Contracting • Agency problem: experts can lower growth rate/cause losses • Get benefit b per unit of capital Assets Liabilities dt = ktipt – et ktipt Inside nt = αtet Outside (1-αt)et et – Assume: effort, kti not contractible, but market value of assets ptkti is – Incentive constraint b - t pt ≤ 0 t b/pt - Expert capital depends on aggregate risk, amplified through prices - Contracting on aggregate risk separately: consider that in an extension, but only within financial sector 34 Evolution of balance sheets – Asset side – long maturity d(ktpt) = kt (g pt + tp + tp)dt + kt (pt + tp)dZt – Liability side 1. Debt – overnight maturity 2. Outside equity: 1-t 3. Inside equity Capital appreciation, E[d(ktpt)] dnt = nt + kt [(a - pt +g pt + tp+ tp)dt + t (pt+tp) dZt] All results (nonlinear dynamics, externalities, excessive leverage under securitization) hold in this expanded model 35 Conclusion • Incorporate financial sector in macromodel – Higher growth – Exhibits instability – due to non-linear liquidity spirals (away from steady state) • Leverage/payouts chosen without taking into account externalities – Towards households (labor provision) – Within financial sector: possible fire sales compromise others’ balance sheets • Securitization avoids inefficiencies, but can increase instabilities (higher leverage/payout rate) 36 To do list • Introducing risk aversion – Asset pricing implication – time-varying risk premia – Time-varying risk-free interest rate • Incorporating instabilities into general DSGE model • Optimal regulation • Introducing money/assets with different liquidity • Exploring maturity mismatch 37 Thank you! ☺ Differences to Bernanke-Gertler-Gilchrist BGG Brunnermeier-Sannikov 1. “small” aggregate shocks, loglinearization around steady state 1. Focus on (large) aggregate shocks (idiosyncratic shocks not essential), explore nonlinearities using Bellman equation 2. Price dynamics driven by idiosyncratic shocks and default risk – Higher state verification costs when expert capital goes down 2. 3. With small aggregate noise, expert incentives to keep “dry powder” (liquidity) are negligible Asset price drops also due to fire sales 3. Expert’s rent depends on state t Incentive to keep “dry powder” (liquidity) 4. Procyclical leverage: Experts reduce position after drop in net worth Liquidity spirals 4. Countercyclical leverage – Experts take on same position after drop in net worth – Leverage increases after drop in networth 5. Debt vs. Equity 6. No fire-sale externality 5. Securitization (debt, inside + outside equity) 6. Fire-sale externality (rationale for regulation) 39 Differences to Kiyotaki-Moore KM – (Kiyotaki version) BruSan 1. 1. Zero-prob. temporary shock – – 2. Persistent (dynamic loss spiral) Amplified through collateral value Non- vs. productive (leveraged) sector Dual role of durable asset 3. 1. 2. 4. Exogenous contract – – 5. Production Collateral One period contract Debt is limited by collateral value Durable asset doesn’t depreciates (capital, fully) Permanent TFP shocks Investment through leveraged financial sector Dual role of durable asset 2. 3. 1. 2. Production Securitization Optimal contract 4. 5. Margin/haircut spiral (leverage) Loss spiral Dynamic contract Debt is limited due idiosyncratic risk and costly state verification δ-depreciation rate 40 40 Differences to He-Krishnamurthy He-Krishnamurthy 1. – – 2. – 3. – – – – Endowment economy GDP growth is exogenously fixed No physical investment No direct investment in risky asset by households Limited participation model Contracting Only short-run relationship (t to t+dt) Fraction of return, fee Asset composition (risky vs. risk-free) is not contractable Non-effort lowers return by xdt • BruSan Direct investments by all households 3. Contracting – – 4. 5. 6. GDP growth depends on net-wealth Physical investment 2. x is exogenous,not linked to fundamental Private benefit from shirking No benchmarking Pricing Implications – When experts wealth declines, their market power increases, and so does their fee – Price impact depends on assumption that household have larger discount rate than experts Procyclical Leverage In H-K calibration paper 1. No fee, households are rationed in their investment 2. As expert wealth approaches 0, interest rate can go to –∞ 3. Heterogeneous labor income for newborns of lDt 4. Non-log utility function Production economy 1. (Potential) long-run relationship Fraction of return, fee, size of asset pool Effort increases fundamental growth to gdt Monetary benefit from shirking No benchmarking Pricing Implication 4. Price drop with state variable Countercyclcial Leverage 5. Entrepreneur take on same position after drop in networth Leverage increases after drop in networth 41 Graphs: leverage 42