Download Patterns in species richness

Document related concepts

Biodiversity action plan wikipedia , lookup

Occupancy–abundance relationship wikipedia , lookup

Introduced species wikipedia , lookup

Habitat conservation wikipedia , lookup

Biogeography wikipedia , lookup

Biodiversity of New Caledonia wikipedia , lookup

Bifrenaria wikipedia , lookup

Habitat wikipedia , lookup

Reconciliation ecology wikipedia , lookup

Coevolution wikipedia , lookup

Biological Dynamics of Forest Fragments Project wikipedia , lookup

Island restoration wikipedia , lookup

Ficus rubiginosa wikipedia , lookup

Latitudinal gradients in species diversity wikipedia , lookup

Transcript
Essentials of Ecology 3rd. Ed.
Chap. 10 patterns in species
richness
鄭先祐 (Ayo)
國立臺南大學 環境與生態學院
生物科技學系 生態學 (2008)
Patterns in species richness
• 10.1 introduction
• 10.2 a simple model of species richness
• 10.3 spatially varying factors that influence
species richness
• 10.4 temporally varying factors that influence
species richness
• 10.5 gradients of species richness
• 10.6 patterns in taxon richness in the fossil
record
• 10.7 appraisal of patterns in species richness
2
Introduction (10.1 Quantitative aspects)
• Diversity indices
– Shannon-Weaver diversity index
• H=-∑Pi lnPi
Fig. 10.1 Species
diversity (H) declined
progressively in a plot
of pasture that
regularity received
fertilizer in an
experiment
commencing in 1856
at Rothamsted in
England.
3
Introduction (10.1 Quantitative aspects)
• Rank-abundance diagrams
Fig. 10.2 Change in
the rank-abundance
pattern of plant
species in the
Rothamstead
fertilized plot from
1856 to 1949.
4
10.2 a simple model of species richness
資源較多
• Fig. 10.3 a
simple model
of species
richness.
Niche較小
重疊較多
5
10.3 Spatially varying factors that
influence species richness
•
•
•
•
10.3.1 Productivity
10.3.2 Predation intensity
10.3.3 Spatial heterogeneity
10.3.4 Environmental harshness
6
10.4 Temporally varying factors that
influence species richness
• 10.4.1 Climatic variation
• 10.4.2 Disturbance
• 10.4.3 Environmental age: evolutionary
time
7
• Fig. 10.5 species
richness of (a) birds,
(b) mammals, (c)
amphibians in North
America in relation to
potential
evapotranspiration.
8
• Fig. 10.6
relationships
between species
richness and
productivity
9
• Fig. 10.7 Paine’s
rocky shore
community.
From 15 species
to 8 species
10
10.2 Topical ECOncerns
• Using exploiter-mediated coexistence to assist
grassland restoration
Fig. 10.8 hemiparasite
Rhinanthus minor
11
(c) Relationship
between animal
species richness and
an index of structural
diversity of vegetation
for freshwater fish.
• Fig. 10.9 (a) relationship
between the number of
plants species and an index
of spatial heterogeneity.
12
• Fig. 10.10 (a) the number of plant species in the
Alaskan Arctic tundra increases with soil pH
• (b) the number of taxa of invertebrates in streams
13
with the pH of stream water.
• Fig. 10.11 (a) Pattern in species richness with which they
are disturbed frequently (F), intermediate (I) or rarely
disturbed (R)
• (b) relationship between insect species richness and
intensity of disturbance.
14
10.5 Gradients of species richness
•
•
•
•
10.5.1 island biogeography
10.5.2 Latitudinal gradients
10.5.3 Gradients with altitude and depth
10.5.4 Gradients during community
succession
• 10.6 Patterns in taxon richness in the
fossil record
15
生態保育的策略
鄭先祐
生態主張者:Ayo 工作室
17
Fig. 8 Equilibrium models of biotas of several
islands of varying distances from the principal
source area and of varying size.
18
Fig.5a. The
Galapagos
Islands
19
Fig. 5b. Number of land-plant species on the
Galapagos islands in relation to the area of the
island. S= 28.6A 0.32
20
Fig. 6. Species-area curve for the amphibians and
reptiles of the West Indies. S= 3.3A 0.30
21
Fig. 9. Island biogeography applied to mountaintops.
(b) Species-area relationship for the resident boreal birds
of the mountaintops in the Great Basin.
22
Fig. 9. Island biogeography applied to mountaintops.
(c) Species-area relationship for the boreal mammal species.
23
Fig. 10 Colonization curves of four small mangroves
islands in the lower Florida Keys, whose entire faunas,
consisting almost solely of arthropods, were exterminated
by methyl bromide fumigation.
24
1960年代的島嶼生物地理學
原則:
• (1) 愈大愈好。
• (2)不要切割。
• (3)切割後,每塊間的距離愈近愈好。
• (4)周長/面積,要愈小愈好。
25
Fig. 10. Schematic
illustration of some
principles for the design
of nature reserves.
26
1960-1980:相關學科的發展
• (1) 大陸飄移。
• (2) 分子生物技術於系統分類學的應用。
• (3) MacArthur and Wilson (1963, 1967):
島嶼生物地理學的平衡理論。
• (4) Vicariance 生物地理學。
1980年以後,the study of biodiversity。
27
Fig. 11. Baja California
28
表1. Cortez 海域島嶼間生物地理之比較。
項 目
50km2 之海洋島嶼
所含之平均數
陸橋性島嶼比海洋性島
嶼含有更多的種類?
陸生 沿岸
植物 魚類
105
13
9.3 3.5
1.3
No
No
Yes
Yes
Very
Yes
No
有一
點
Yes
Yes
Very
Yes
No
No
No
No
No
有一點
No
No
No
No
No
No
No
No
No
Yes
有一點
0
2
0
0
0
0
5
35
0
47
16
69
No
島嶼上所含之種類比大
陸塊上還少嗎?
Holocene才出現之海洋
性島嶼所含的種類數比
老生島嶼還少嗎?
距大陸愈遠,種類數愈
少嗎?陸橋性島嶼
海洋性島嶼
特有性:陸橋性島嶼
海洋性島嶼
陸棲 陸棲 蜥蜴 陸棲
鳥類 爬蟲
哺乳
Yes
29
Fig. 13. 島嶼生物地理學(修改自Case & Code, 1987)
30
• Fig. 10.14 (b) Proportion of variance in species
richness, for four animal groups, related to island
area (blue), to habitat diversity (orange), to
correlated variation between area and habitat
diversity (green) and unexplained by either (maroon).
31
當代的切割理論與生物保育策略
「一大」或是「多小」?
• (1) maximizes the mean size of reserves
• (2) maximizes the number of reserves
32
Fig. 4. The distribution of areas
of nature reserves in the world.
33
Fig. 14. Diagram of experimental design. Plots with solid
edges represent enclosures preventing access by sheep.
Broken lines mark delineated plots in the grazed area.
34
表2. 於不同大小面積之隔離區與牧養區內,顯花植物的種
類數之比較。
隔離區
牧養區
項目
小型 中型 大型 小型 中型 大型
N
32
8
2
16
4
1
總數
29
26 20
26
16
15
最多/各區 15
15 15
13
12 (15)
最少/各區
3
8 15
5
8 (15)
全區
34種
26種
35
表3. 各型樣區的種類數目之變化。
項 目
種類1985
1986
1987
遺失種類
1985-1986
1986-1987
新增種類
1985-1986
1986-1987
小型 中型 大型
全部
29
30
33
26
27
29
20
20
25
34
33
40
4
2
5
3
3
2
5
1
5
5
6
5
3
7
4
6
36
海洋性島嶼
離岸200公里以上
Fig. 16. Cumulative species-area curves for oceanic
archipelagos.
a. Extant native birds of the Hawaiian islands
b. Galapagos land birds
c. Galapagos Darwin's finches
d. Galapagos ferns.
37
Fig. 16. Cumulative species-area curves for oceanic
海洋性島嶼
archipelagos.
e. Galapagos insects
離岸200公里以上
f. Galapagos flowering plants
g. Caribbean bats.
h. Facroes islands ground beetles.
38
海洋性島嶼
離岸200公里以上
Fig. 16. Cumulative species-area curves for oceanic
archipelagos.
g. Caribbean bats.
h. Facroes islands ground beetles.
i.. Canary Islands birds
j. Canary island ground beetles.
39
沿岸島嶼
離岸100KM以內
Fig. 17. Cumulative species-area curves for nearshores
archipelagos.
a. Seabirds on islands off of Scotland.
b. Extant marsupials on islands in the Bass Straits.
c. Reptiles on islands in the Bass Straits.
d. Sand dune mammals on islands in the Bass Straits.
40
沿岸島嶼
離岸100KM以內
Fig. 17. Cumulative species-area curves for nearshore
archipelagos.
e. Birds of the California Channel islands.
f. Reptiles and amphibians of the California Channel islands.
g. Plants of the islands in the Gulf of California.
h. Mammals of the islands in the Gulf of California.
41
沿岸島嶼
離岸100KM以內
Fig. 17. Cumulative species-area curves for nearshores
archipelagos.
g. Plants of the islands in the Gulf of California.
h. Mammals of the islands in the Gulf of California.
i. Reptiles and amphibians of the islands in the Gulf of
California.
42
陸域隔離區
Fig. 18. Cumulative species-area curves for terrestrial
habitat isolates.
a. Mammals of East African national parks.
b. Birds of East African national parks.
c. Mountaintop small mammals.
d. Mountaintop plants.
43
陸域隔離區
Fig. 18. Cumulative species-area curves for terrestrial habitat
isolates.
e. Mountaintop birds
f. Birds in New Jersey woodlots
g. Mammals of Australian wheatbelt reserves.
h. Lizards of Australian wheatbelt reserves.
44
陸域隔離區
Fig. 18. Cumulative species-area curves for terrestrial
habitat isolates.
g. Mammals of Australian wheatbelt reserves.
h. Lizards of Australian wheatbelt reserves.
i. Mammals of U.S. national parks.
45
Fig. 19 Effect of anthropogenic extinctions on cumulative species-area
curves for two island groups.
a. Extant native birds of the Hawaiian islands
b. Extant and fossil birds of the Hawaiian islands.
c. Marsupials on island in the Bass Strait.
d. Marsupials on island in the Bass Strait.
46
切割棲息地後,所含的生物種類數反而增加,可能的
原因:
• 1. Habitat diversity
• 2. Population dynamics.
– Priority effects
– Multiple stable equilibria
– Edge effects
– Disturbance
– Species pool and dispersal ability.
– Colonization
– Evolutionary effects.
– Extinctions.
• 3. Historical effects.
47
10.5.2 Latitudinal gradients
• Fig. 10.17 Latitudinal patterns in species
richness
48
• Fig. 10.17 Latitudinal patterns in species
richness
49
10.5.3 Gradients with altitude and depth
Fig. 10.18 (a) Breeding birds in Nepalese Himalayas
(b) plants in the Sierra Manantlan, Mexico.
50
Fig. 10.18 (c) ants in Lee Canyon in the Spring Mountains
of Nevada, USA.
(d) flowering plants in the Nepalese Himalayas.
51
• Fig. 10.19 Depth gradient in species richness of
bottom-dwelling vertebrates and invertebrates (fish,
decapods, holothurians, asteroids) in the ocean
southwest of ireland.
52
10.5.4 Gradients during community
succession
• Fig. 10.20 Examples of
increases in animal species
richness during succession
(a) bird species richness in
tropical rain forest in
northeast India.
53
• Fig. 10.20 Examples of
increases in animal
species richness
during succession (b)
the species richness of
true bugs increased
with time after an
English farm field was
taken out of cultivation.
54
10.6 Patterns in taxon richness in the
fossil record
• Fig. 20.21 Patterns in taxon richness through the fossil
record.
55
• Fig. 20.21 Patterns in taxon richness through the fossil record.
56
• Fig. 20.21 Patterns in taxon richness through the fossil record.
57
• Fig. 10.22 (a) the
percentage of genera
of large mammalian
herbivores that have
gone extinct in the last
130,000 years is
strongly sizedependent.
58
• Fig. 10.22 (b)
percentage survival of
large animals on
three continents and
two large islands. The
dramatic declines in
taxon richness in
Australia, North
America and the
island of New
Zealand and
Madagascar occurred
at different times in
history.
59
10.7 Appraisal of patterns in species
richness
• Richness may peak at intermediate levels of
available environmental energy or of disturbance
frequency.
• Richness declines with a reduction in island area
or an increase in island remoteness
• Richness decreases with increasing latitude,
and declines or shows a hump-backed
relationship with altitude or depth in the ocean.
• Richness increases with an increase in spatial
heterogeneity but may decrease with an
increase in temporal heterogeneity.
60
The flood of exotic species
• Fig. 10.23 the alien flora of the British isles (a) according
to community type.
• (b) by geographic origin.
61
• Fig. 10.23 the alien flora of the British isles (a) according
to community type.
• (b) by geographic origin.
62
Review questions
1. Explain species richness, diversity index and rankabundance diagrams and compare what each
measures.
2. Why is it so difficult to identify ‘harsh’ environments?
3. Researchers have reported a variety of hump-shaped
patterns in species richness, with peaks of richness
occurring at intermediate levels of productivity,
predation pressure, disturbance and depth in the ocean.
Review the evidence and consider whether these
patterns have any underlying mechanisms in common.
63
問題與討論
[email protected]
Ayo 台南站 http://mail.nutn.edu.tw/~hycheng/
國立臺南大學 環境與生態學院 Ayo 院長的個人網站