* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Physics 207: Lecture 2 Notes
Old quantum theory wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Specific impulse wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Routhian mechanics wikipedia , lookup
Frame of reference wikipedia , lookup
Laplace–Runge–Lenz vector wikipedia , lookup
Tensor operator wikipedia , lookup
Coriolis force wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Sagnac effect wikipedia , lookup
Photon polarization wikipedia , lookup
Inertial frame of reference wikipedia , lookup
Derivations of the Lorentz transformations wikipedia , lookup
Classical mechanics wikipedia , lookup
Velocity-addition formula wikipedia , lookup
Seismometer wikipedia , lookup
Faster-than-light wikipedia , lookup
Fictitious force wikipedia , lookup
Angular momentum wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Variable speed of light wikipedia , lookup
Accretion disk wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Angular momentum operator wikipedia , lookup
Work (physics) wikipedia , lookup
Equations of motion wikipedia , lookup
Jerk (physics) wikipedia , lookup
Hunting oscillation wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Relativistic angular momentum wikipedia , lookup
Lecture 6 Goals: Discuss circular motion Chapters 5 & 6 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Begin to solve 1D and 2D problems with forces in equilibrium and non-equilibrium (i.e., acceleration) using Newton’s 1st and 2nd laws. Assignment: HW3, (Chapters 4 & 5, due 2/10, Wednesday) Finish reading Chapter 6 Exam 1 Wed, Feb. 17 from 7:15-8:45 PM Chapters 1-7 Physics 207: Lecture 6, Pg 1 Concept Check Q1. You drop a ball from rest, how much of the acceleration from gravity goes to changing its speed? A. All of it B. Most of it C. Some of it D. None of it Q2. A hockey puck slide off the edge of the table, at the instant it leaves the table, how much of the acceleration from gravity goes to changing its speed? A. All of it B. Most of it C. Some of it D. None of it Physics 207: Lecture 6, Pg 2 Uniform Circular Motion (UCM) Arc traversed Tangential speed Period Frequency Angular position Angular velocity s=qr | vt | = Ds/Dt or (in the limit) ds/dt = r dq /dt T = 2p r / | vt | s f=1/T vt q r q w = dq /dt = | vt | / r Period (T): The time required to do one full revolution, 360° or 2p radians Frequency (f): 1/T, number of cycles per unit time Angular velocity or speed w = 2pf = 2p/T, number of radians traced out per unit time (in UCM average and instantaneous will be the same) Physics 207: Lecture 6, Pg 3 Example A horizontally mounted disk 2 meters in diameter spins at constant angular speed such that it first undergoes (1) 10 counter clockwise revolutions in 5 seconds and then, again at constant angular speed, (2) 2 counter clockwise revolutions in 5 seconds. 1 What is T the period of the initial rotation? T = time for 1 revolution = 5 sec / 10 rev = 0.5 s also T = 2p r / | vt | ( just like x = x0 + v Dt Dt = (x- x0 ) / v ) Physics 207: Lecture 6, Pg 5 Example A horizontally mounted disk 2 meters in diameter spins at constant angular speed such that it first undergoes 10 counter clockwise revolutions in 5 seconds and then, again at constant angular speed, 2 counter clockwise revolutions in 5 seconds. 1 What is T the period of the initial rotation? 2 What is w the initial angular velocity? w = dq /dt = Dq /Dt w = 10 • 2π radians / 5 seconds = 12.6 rad / s ( also 2 p f = 2 p / T ) Physics 207: Lecture 6, Pg 6 Example A horizontally mounted disk 2 meters in diameter spins at constant angular speed such that it first undergoes 10 counter clockwise revolutions in 5 seconds and then, again at constant angular speed, 2 counter clockwise revolutions in 5 seconds. 1 What is T the period of the initial rotation? 2 What is w the initial angular velocity? 3 What is the tangential speed of a point on the rim during this initial period? | vt | = ds/dt = (r dq) /dt = r w | vt | = r w = 1 m • 12.6 rad/ s = 12.6 m/s Physics 207: Lecture 6, Pg 7 Angular displacement and velocity Notice that if w ≡ dq / dt and, if w is constant, then integrating w = dq / dt, we obtain: q = qo + w Dt ( In one dimensional motion if v = dx/dt = constant then x = x0 + v Dt ) Counter-clockwise is positive, clockwise is negative s q = qo + w Dt vt r q Physics 207: Lecture 6, Pg 9 Example A horizontally mounted disk 2 meters in diameter spins at constant angular speed such that it first undergoes 10 counter clockwise revolutions in 5 seconds and then, again at constant angular speed, 2 counter clockwise revolutions in 5 seconds. 1 What is T the period of the initial rotation? 2 What is w the initial angular velocity? 3 What is the tangential speed of a point on the rim during this initial period? 4 Sketch the q (angular displacement) versus time plot. Physics 207: Lecture 6, Pg 10 Sketch of q vs. time q (radians) 30p q = qo + w Dt q = 0 + 4p 5 rad q = qo + w Dt q = 20p rad + (4p/5) 5 rad q = 24 rad 20p 10p 0 5 10 time (seconds) Physics 207: Lecture 6, Pg 11 Example A horizontally mounted disk 2 meters in diameter spins at constant angular speed such that it first undergoes 10 counter clockwise revolutions in 5 seconds and then, again at constant angular speed, 2 counter clockwise revolutions in 5 seconds. 1 What is T the period of the initial rotation? 2 What is w the initial angular velocity? 3 What is the tangential speed of a point on the rim during this initial period? 4 Sketch the q (angular displacement) versus time plot. 5 What is the average angular velocity over the 1st 10 seconds? Physics 207: Lecture 6, Pg 12 Sketch of q vs. time q (radians) 30p q = qo + w Dt q = 0 + 4p 5 rad q = qo + w Dt q = 20p rad + (4p/5) 5 rad q = 24 rad 20p 10p 0 5 10 time (seconds) 5 Avg. angular velocity = Dq / Dt = 24 p /10 rad/s Physics 207: Lecture 6, Pg 13 Example A horizontally mounted disk 2 meters in diameter spins at constant angular speed such that it first undergoes 10 counter clockwise revolutions in 5 seconds and then, again at constant angular speed, 2 counter clockwise revolutions in 5 seconds. 6 If now the turntable starts from rest and uniformly accelerates throughout and reaches the same angular displacement in the same time, what must be the angular acceleration ? Physics 207: Lecture 6, Pg 14 What if w is linearly increasing … Then angular velocity is no longer constant so dw/dt ≠ 0 Define tangential acceleration as at = dvt/dt = r dw/dt So s = s0 + (ds/dt)0 Dt + ½ at Dt2 and s = q r We can relate at to dw/dt q = qo + wo Dt + 1 at Dt2 2 r w = wo + at Dt r Many analogies to linear motion but it isn’t one-to-one Remember: Even if w is constant, there is always a radial acceleration. Physics 207: Lecture 6, Pg 16 Circular motion also has a radial (perpendicular) component Uniform circular motion involves only changes in the direction of the velocity vector, thus acceleration is perpendicular to the trajectory at any point, acceleration is only in the radial direction. Quantitatively (see text) Centripetal Acceleration vt ar r ar = vt2/r Circular motion involves continuous radial acceleration Physics 207: Lecture 6, Pg 17 Tangential acceleration? 6 If now the turntable starts from rest and uniformly accelerates throughout and reaches the same angular displacement in the same time, what must the “tangential acceleration” be? q = qo + wo Dt + 1 at 2 r s Dt2 vt r q (from plot, after 10 seconds) 24 p rad = 0 rad + 0 rad/s Dt + ½ (at/r) Dt2 48 p rad 1m / 100 s2 = at 7 What is the magnitude and direction of the acceleration after 10 seconds? Physics 207: Lecture 6, Pg 18 Tangential acceleration? 7 What is the magnitude and direction of the acceleration after 10 seconds? s vt at = 0.48 p m / s2 and w r = wo r + r at r r q Dt = 4.8 p m/s = vt ar = vt2 / r = 23 p2 m/s2 Tangential acceleration is too small to plot! Physics 207: Lecture 6, Pg 20 Angular motion, sign convention If angular displacement velocity accelerations are counter clockwise then sign is positive. If clockwise then negative Physics 207: Lecture 6, Pg 21 What causes motion? (Actually changes in motion) What are forces ? What kinds of forces are there ? How are forces and changes in motion related ? Physics 207: Lecture 6, Pg 23 Newton’s First Law and IRFs An object subject to no external forces moves with constant velocity if viewed from an inertial reference frame (IRF). If no net force acting on an object, there is no acceleration. The above statement can be used to define inertial reference frames. Physics 207: Lecture 6, Pg 24 IRFs An IRF is a reference frame that is not accelerating (or rotating) with respect to the “fixed stars”. If one IRF exists, infinitely many exist since they are related by any arbitrary constant velocity vector! In many cases (i.e., Chapters 5, 6 & 7) the surface of the Earth may be viewed as an IRF Physics 207: Lecture 6, Pg 25 Newton’s Second Law The acceleration of an object is directly proportional to the net force acting upon it. The constant of proportionality is the mass. This expression is vector expression: Fx, Fy, Fz Units The metric unit of force is kg m/s2 = Newtons (N) The English unit of force is Pounds (lb) Physics 207: Lecture 6, Pg 26 Lecture 6 Assignment: HW3, (Chapters 4 & 5, due 2/10, Wednesday) Read rest of chapter 6 Physics 207: Lecture 6, Pg 27