* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Breakdown of a topological phase
Fundamental interaction wikipedia , lookup
Hydrogen atom wikipedia , lookup
Relational approach to quantum physics wikipedia , lookup
Path integral formulation wikipedia , lookup
Superconductivity wikipedia , lookup
Quantum potential wikipedia , lookup
Bell's theorem wikipedia , lookup
EPR paradox wikipedia , lookup
Quantum chromodynamics wikipedia , lookup
Photon polarization wikipedia , lookup
Renormalization wikipedia , lookup
Introduction to gauge theory wikipedia , lookup
History of quantum field theory wikipedia , lookup
State of matter wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Electromagnetism wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Old quantum theory wikipedia , lookup
Phase transition wikipedia , lookup
Breakdown of a topological phase Quantum phase transition(s) in a loop gas with tension Simon Trebst Microsoft Research University of California, Santa Barbara http://StationQ.ucsb.edu Outline • • • Topological phases • Fault-tolerant quantum computing • A simple, soluble spin model - the toric code Breakdown of topological order • Perturbing the toric code around soluble point • Numerical simulations Outlook Introduction • • Spontaneous symmetry breaking • ground state has less symmetry than Hamiltonian • Landau-Ginzburg-Wilson theory • local order parameter Topological order • ground state has more symmetry more than Hamiltonian • degenerate ground states • non-local order parameter Topological quantum liquids • • Gapped spectrum No broken symmetry • Degenerate ground state on torus • Fractional statistics of excitations • Hilbert space split into topological sectors No local matrix element mixes the sectors ∆ ∆ iθ e 0 H 1 Fault-tolerant quantum computing A. Kitaev, Ann. Phys. 303, 2 (2003). Idea: Use degenerate groundstates as qubits Topological order makes it robust with respect to local perturbations excitations ∆ |0! |1! Energy gap ∆. protects from thermal excitations |0! |1! States are locally indistinguishable → no phase errors States do not couple → no bit flip errors Liquid is required since environment couples to broken symmetries Example systems • Experimental realization of topological quantum liquid • Fractional quantum Hall effect (FQHE) but gapless edge states are a problem • First implementation proposal in Josephson junction arrays • Other candidate systems 2a • Frustrated magnets • Quantum dimer models • Ultra-cold atoms Stability of the topological phase • • Topological phases have not been directly observed in experiment (beyond FQHE), because • they are unstable? • exist only in small regions of phase space? • we miss the appropriate tools? We will look at the simplest model of an (abelian) topological phase: the quantum loop gas Quantum loop gases • are the “Ising models” of topological phases • are hidden also in the quantum dimer model reference configuration dimer configuration + loop confguration = The toric code: the simplest loop gas A. Kitaev, Ann. Phys. 303, 2 (2003). HTC = −A ! v " j∈vertex(v) σjz −B ! " σjx p j∈plaquette(p) similar to ring exchange introduces frustration σi Hamiltonian has only local terms. All terms commute → exact solution! The vertex term A. Kitaev, Ann. Phys. 303, 2 (2003). HTC = −A ! v " j∈vertex(v) σjz −B ! " σjx p j∈plaquette(p) • is minimized by an even number of down-spins around a vertex. • Replacing down-spins by loop segments maps ground state to closed loops. • Open ends are (charge) excitations costing energy 2A. σz = ↓ A→∞ The plaquette term A. Kitaev, Ann. Phys. 303, 2 (2003). HTC = −A ! v " j∈vertex(v) σjz −B ! " σjx p j∈plaquette(p) • flips all spins on a plaquette. • favors equal amplitude superposition of all loop configurations. • Sign changes upon flip (vortices) cost energy 2B. fugacity = 1 free loop creation isotopy free local distortions surgery reconnections The toric code A. Kitaev, Ann. Phys. 303, 2 (2003). Ground-state manifold is a quantum loop gas. Ground-state wavefunction is equal superposition of loop configurations. The toric code A. Kitaev, Ann. Phys. 303, 2 (2003). Ground-state manifold is a quantum loop gas. Py = 1 Topological sectors defined by winding number parity Py/x = Py = −1 ! i∈cx/y σiz The toric code A. Kitaev, Ann. Phys. 303, 2 (2003). Ground-state manifold is a quantum loop gas. Py = 1 Topological sectors defined by winding number parity Py/x = Py = −1 ! i∈cx/y σiz Perturbing the toric code H = HTC − h ! i σiz − J magnetic field ! σiz σjz !ij" Ising interaction local perturbations chemical potential for loops small loops are favored Magnetic field / Ising interaction introduce bare loop tension. Mapping to plaquette variables Express bond spins by product of two plaquette spins. plaquette spin µp plaquette spin µq σi σiz 1 z z = ± µp µq 2 Choice of local signs is gauge-invariant up to fixing the topological sector. Mapping of interaction terms plaquette spin µp plaquette spin µq σi µk σiz σiz σjz 1 z z = µp µq 2 = = µm µl ! 1 z z µk µl 2 1 z z µk µm 4 Both magnetic field and Ising interaction give Ising coupling between plaquette spins. "! 1 z z µl µm 2 " Mapping to 3D Ising model Hcl = −Kτ ! τ,p Sp (τ )Sp (τ + ∆τ ) − K 1 Kτ = − ln [tanh(∆τ · B)] 2 plaquette flips ! Sp (τ )Sq (τ ) τ,!p,q" 1 K = ∆τ · h 2 magnetic field Kc = 0.2216595(26) imaginary time A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081 (1991). B Kτ real space = 1 = K gives ∆τ hc = = 0.761403 0.58224 → numerical simulation Lattice gauge theories J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979). Without dynamical electric charges (A → ∞), the toric code becomes equivalent to the “even” Ising gauge theory. S = − βτ ! {Pτ } σz σz σz σz − β imaginary time ! σz σz σz σz {Ps } real space In the context of QCD, the finite-temperature physics of such gauge theories has been studied extensively. We are interested in the zero-temperature physics of this gauge theory. Magnetic phase transition 0.5 0.5 0.5 no equal superposition of loops magnetization 0.4 0.4 0.3 0.3 0.2 0.2 susceptibility 1 L=8 L = 12 L = 16 L = 24 0.4 0.5 0 0.4 0.5 0.6 0.7 0.8 loop tension h 0.9 ! ! σiz "/2N i 1 topological topological phase phase 0.1 0.1 0.3 classically classically orderedphase phase ordered 0.2 0.1 hc = 0.58824 00 00 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0 11 loop loop tension tension hh Continuous quantum phase transition between topological phase and classically ordered phase (3D Ising universality class). Magnetic vortices dual lattice Magnetic vortices are plaquettes with ! j σjx = −1 Massive in topological phase. Correlation function for two vortices is given by product of bond spins along path ! ! σiz " = !µzp µzq " i which is equivalent to spin-spin correlation function of plaquette spins. Vortex condensation j 0.8 gap Δ / 2B ! 1 σjx = −1 exp(−β∆) 0.8 0.6 0.6 0.4 0.4 topological phase 0.2 0.2 0 0 0.2 0.4 error probability 1 0.6 0.8 0 1 loop tension h Gap estimated from imaginary time correlation function ∆ ∝ 1/ξτ . Degeneracy splitting odd odd energy splitting δE(L) 20 20 topological phase 0 0 -20 -20 -40 -40 even even -60 -60 0 0.2 0.4 0.6 0.8 loop tension h 1 1.2 Back to the Ising model • Where are the topological sectors in the Ising model? plaquette spin µp plaquette spin µq σi σiz 1 z z = µp µq 2 spin flip changes sign of Ising interaction along cut change of boundary condition “Topological sectors” correspond to variations of the boundary conditions. Degeneracy splitting odd odd energy splitting δE(L) 20 20 topological phase 0 0 -20 -20 -40 √ δE ∝ L 2 -40 even even -60 -60 0 0.2 0.4 0.6 0.8 1 1.2 loop tension h Strong tension limit well understood. δE ∝ L Degeneracy splitting 4 4 topological phase energy splitting δE(L) 2 2 0 -2 0 δE ∝ exp(−∆L/v) L=8 L = 12 L = 16 L = 24 L = 32 L = 40 L = 48 -4 -6 -8 0.54 -2 -4 -6 δE ∝ L 0.55 0.56 0.57 0.58 0.59 loop tension h 0.6 0.61 -8 0.62 Transition from exponential suppression to power-law growth. Finite-size scaling -2 10 classically ordered phase 2 energy splitting δE(L) energy splitting !E(L) / L -2 10 4 4 -3 -3 10 10 h = 0.585 h = 0.584 h = 0.583 h = 0.58224 h = 0.581 h = 0.580 2 1 2 topological phase 1 -4 -4 10 0.5 critical exponent z = 1.42 ± 0.02 8 12 16 20 24 system size L 0.5 10 28 32 36 40 44 48 0.25 exponential accuracy for larger systems 0.25 8 12 16 20 24 system size L 28 32 36 40 44 48 100,000 cpu hours Transition from power-law to exponential scaling. Charge confinement Charge excitations are open loop ends. Deconfined in topological phase We can define a confinement length ξc : distance between loop ends. At soluble point: 1 !ξc2 " = 2 L L/2 ! L/2 ! ∆x=−L/2 ∆y=−L/2 " ∆x + ∆y 2 2 # L2 + 2 = 6 What happens for finite loop tension? Charge confinement confinement length !c 1 confinementlength length !ξc c· 6/(L2 + 2) confinement topological phase crossing point topological topologicalphase phase 1 11 1 0.95 0.5 L=8 L = 12 LL == 16 8 0.95 0.5 0.5 0.9 0.56 0 0 0 00 0.1 0 L = 12 L = 16 0.57 0.9 0.58 0.59 0.56 0.57 0.58 0.1 0.2 0.3 0.4 0.3 0.20.1 0.3 0.2 0.6 0.59 0.6 0.4 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.4 0.7 0.8 0.9 11 0.5 0.6 loop tension h loop tension h h loop tension Magnetic and confinement transitions occur simultaneously. There is only one length scale ξ = ξc . Dissipation Coupling the environment to the classical state of the system H = −2B ! p # ! !" † † x z µp + Ck (bp,k + bp,k )µp + ωi,k bi,k bi,k p,k plaquette spin flips (toric code) i,k heat bath coupling to environment Integrate out bath degrees of freedom (Ohmic dissipation) Hcl = −Kτ ! τ,p α ! " π #2 Sp (τ )Sp (τ ! ) Sp (τ )Sp (τ + ∆τ ) − 2 Nτ sin2 ( Nπ |τ − τ ! |) ! τ <τ ,p τ Dissipation Hcl = −Kτ ! τ,p α ! " π #2 Sp (τ )Sp (τ ! ) Sp (τ )Sp (τ + ∆τ ) − 2 Nτ sin2 ( Nπ |τ − τ ! |) ! τ <τ ,p τ spins couple along imaginary time only imaginary time no real space coupling system decouples into 1-dimensional chains (with long-range interactions) real space is just the Caldeira-Legget model Dissipation 1 linear 0.8 0.8 0.6 0.6 crossover α ≈ 0.1 0.4 0.4 topological phase 0.2 exponential 0.2 0 0 0.1 0.2 0.3 0.4 dissipation strength α 0.5 error probability gap Δ / 2B 1 0.6 0 0.7 Thouless-type phase transition Topological phase is stable for small dissipation strength α < αc ≈ 0.7 . Summary and Outlook • The topological phase in the toric code exists for an extended range around the soluble point. • Local perturbations can drive a continuous quantum phase transition to a classically ordered phase. • No need to fine-tune system to have topological order. • Paucity of experimental observations not due to intrinsic delicateness of such phases. • Does this picture hold for non-abelian phases? S. Trebst, P. Werner, M. Troyer, K. Shtengel, and C. Nayak cond-mat/0609048 Non-abelian topological quantum computing DEUTSCHE AUSGABE DES /"Ê/Ê /,]Ê-/"*Ê1//" -ÊÊUÊÊ"</" Ê Ê*"6,/9 r Katalysatoren JULI 2006 · € 6,90 (D/A) • Topological phases with non-abelian braiding statistics of the excitations. - / , zur Abwasserreinigung ÜÊÌÊ->ÛiÊ Ã r Fernste Galaxien vÊ `ÀiÊvÀ r ESSAY: Für ein Sterben r Der Untergang von Ugarit ,Ì>ÛÀÕà in Würde *,ÊÓääÈ www.spektrum.de 7 7 7°- ° " PHY SI K • Universal quantum computation can be done by braiding quasi-particles. Quantenknoten in der Raumzeit Mit ihrer Hilfe könnten Quantencomputer leichter #ULTURED!PESAND realisiert werden %VOLVING)NTELLIGENCE -AGNETIC4RIGGERSOF No need for fine control of quantum gates. D6179E 13,50 sFr / Luxemburg 8,– € • 3OLAR&LARES 0LUGGED)N (YBRID#ARS S Z EN A R IEN Die Kunst der Vorhersage D I AB E T E S O R A N G - U TA N S Medikamente Klüger durch gegen Spätfolgen Kultur "*9,/ÊÓääÈÊ- / Ê, ]Ê °