Download Quantum entanglement, topological order, and tensor category theory

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Wave–particle duality wikipedia , lookup

Basil Hiley wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Bohr–Einstein debates wikipedia , lookup

Probability amplitude wikipedia , lookup

Measurement in quantum mechanics wikipedia , lookup

Double-slit experiment wikipedia , lookup

Renormalization wikipedia , lookup

Instanton wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Renormalization group wikipedia , lookup

Particle in a box wikipedia , lookup

Density matrix wikipedia , lookup

Max Born wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

Copenhagen interpretation wikipedia , lookup

Bell test experiments wikipedia , lookup

Quantum decoherence wikipedia , lookup

Hydrogen atom wikipedia , lookup

Quantum dot wikipedia , lookup

Quantum field theory wikipedia , lookup

Coherent states wikipedia , lookup

Delayed choice quantum eraser wikipedia , lookup

Path integral formulation wikipedia , lookup

Scalar field theory wikipedia , lookup

Quantum fiction wikipedia , lookup

Many-worlds interpretation wikipedia , lookup

Bell's theorem wikipedia , lookup

Quantum computing wikipedia , lookup

Orchestrated objective reduction wikipedia , lookup

Interpretations of quantum mechanics wikipedia , lookup

EPR paradox wikipedia , lookup

Quantum machine learning wikipedia , lookup

History of quantum field theory wikipedia , lookup

Quantum key distribution wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Quantum state wikipedia , lookup

Canonical quantization wikipedia , lookup

Quantum teleportation wikipedia , lookup

Topological quantum field theory wikipedia , lookup

Quantum group wikipedia , lookup

Hidden variable theory wikipedia , lookup

T-symmetry wikipedia , lookup

Quantum entanglement wikipedia , lookup

Transcript
Quantum entanglement, topological order,
and tensor category theory
Xiao-Gang Wen, Perimeter/MIT
ESI, Vienna, Aug., 2014
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Local unitary trans. defines gapped quantum phases
Two gapped states, |Ψ(0)� and |Ψ(1)� (or more precisely, two
ground state subspaces), are in the same phase iff they are related
�
through a local unitary (LU)� evolution
�1 �
�
|Ψ(1)� = P e − i 0 dg H(g ) |Ψ(0)�
�
where H(g ) = i Oi (g ) and Oi (g ) are local hermitian operators.
Hastings, Wen 05; Bravyi, Hastings, Michalakis 10
• LU evolution =�local unitary
transformation:
�
�1
|Ψ(1)� = P e − i T 0 dg H(g ) |Ψ(0)�
=
|Ψ(0)�
ground−state
subspace
Δ −>finite gap
ε −> 0
• The local unitary transformations define an equivalence relation:
Two gapped states related by a local unitary transformation are in
the same phase.
A gapped quantum phase is an equivalence class of local
unitary transformations – a conjecture.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
A gapped quantum liquid phase:
• A gapped quantum phase:
ψN1 ψN2 ψN3 ψN4
HN1 , HN2 , HN3 , HN4 , · · ·
LU
LU
LU
LU
HN� 1 , HN� 2 , HN� 3 , HN� 4 , · · ·
ψN’1 ψN’2 ψN’3 ψN’4
Ni+1 = sNi , s ∼ 2
gLU
gLU
gLU
• A gapped quantum liquid phase:
ψN1 ψN2 ψN3 ψN4
HN1 , HN2 , HN3 , HN4 , · · ·
LU
LU
LU
LU
HN� 1 , HN� 2 , HN� 3 , HN� 4 , · · ·
ψN’1 ψN’2 ψN’3 ψN’4
Nk+1 = sNk , s ∼ 2
Generalized local unitary (gLU) trans.
Nk
ground−state
subspace
Δ −>finite gap
ε −> 0
Nk+1
Nk
gLU
LU
• 3+1D toric code model → a 3+1D gaped quantum liquid.
• Stacking 2+1D FQH states and Haah cubic model → gapped
quantum state, but not liquids.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Bosonic/fermionic gapped quantum phases
Both local bosonic and fermionic systems have the following local
property: Vtot = ⊗i Vi
|Ψ(1)� =
|Ψ(0)�
• Bosonic gapped phases�are the equivalent classes of LU
transformation: LU = Uijk , which acts within Vi ⊗ Vj ⊗ Vk , and
[Uijk , Ui � j � k � ] = 0, e.g. Uijk = e
i(bi bj bk† +h.c.)
• Fermionic gapped phases
� aref the equivalent classes of fermionic LU
transformation: fLU = Uijk , which does not act within
Vi ⊗ Vj ⊗ Vk , but
f , Uf
[Uijk
i �j �k � ]
= 0, e.g.
f
Uijk
=e
i(ci cj ck† ck +h.c.)
Gapped quantum liquids for bosons and fermions have very
different mathematical structures
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
LU trans. defines long-range entanglement (ie topo. order)
For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
LU trans. defines long-range entanglement (ie topo. order)
For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase
• Thinking about entanglement: Chen-Gu-Wen 2010
- There are long range entangled (LRE) states
- There are short range entangled (SRE) states
|LRE� �=
|product state� = |SRE�
local unitary
transformation
LRE
state
SRE
product
state
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
LU trans. defines long-range entanglement (ie topo. order)
For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase
• Thinking about entanglement: Chen-Gu-Wen 2010
- There are long range entangled (LRE) states → many phases
- There are short range entangled (SRE) states → one phase
|LRE� �=
local unitary
transformation
LRE
state
SRE
product
state
|product state� = |SRE� g2
local unitary
transformation
SRE
SRE
product product
state
state
topological order
LRE 1
LRE 2
local unitary
transformation
LRE 1
LRE 2
SRE
phase
transition
g1
• All SRE states belong to the same trivial phase
• LRE states can belong to many different phases
= different patterns of long-range entanglements defined by the LU trans.
= different topological orders Wen 1989
→ A classification by tensor category theory Levin-Wen 05, Chen-Gu-Wen 2010
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → more entangled
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
= (| ↓↑� − | ↑↓�) ⊗ (| ↓↑� − | ↑↓�) ⊗ ... →
short-range entangled (SRE) entangled
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
= (| ↓↑� − | ↑↓�) ⊗ (| ↓↑� − | ↑↓�) ⊗ ... →
short-range entangled (SRE) entangled
�
�
�
= |0�x1 ⊗ |1�x2 ⊗ |0�x3 ...
• Crystal order: |Φcrystal � = �
•
= direct-product state → unentangled state (classical)
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
= (| ↓↑� − | ↑↓�) ⊗ (| ↓↑� − | ↑↓�) ⊗ ... →
short-range entangled (SRE) entangled
�
�
�
= |0�x1 ⊗ |1�x2 ⊗ |0�x3 ...
• Crystal order: |Φcrystal � = �
•
= direct-product state → unentangled state (classical)
• Particle condensation
(superfluid)
�
�
�
�
|ΦSF � = all conf. �
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Quantum entanglements through examples
• | ↑� ⊗ | ↓� = direct-product state → unentangled (classical)
• | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑� → entangled (quantum)
• | ↑� ⊗ | ↑� + | ↓� ⊗ | ↓� + | ↑� ⊗ | ↓� + | ↓� ⊗ | ↑�
= (| ↑� + | ↓�) ⊗ (| ↑� + | ↓�) = |x� ⊗ |x� → unentangled
•
= | ↓� ⊗ | ↑� ⊗ | ↓� ⊗ | ↑� ⊗ | ↓�... → unentangled
= (| ↓↑� − | ↑↓�) ⊗ (| ↓↑� − | ↑↓�) ⊗ ... →
short-range entangled (SRE) entangled
�
�
�
= |0�x1 ⊗ |1�x2 ⊗ |0�x3 ...
• Crystal order: |Φcrystal � = �
•
= direct-product state → unentangled state (classical)
• Particle condensation
(superfluid)
�
�
�
�
= (|0�x1 + |1�x1 + ..) ⊗ (|0�x2 + |1�x2 + ..)...
|ΦSF � = all conf. �
= direct-product state → unentangled state (classical)
- Superfluid, as an exemplary quantum state of matter, is actually
very classical and unquantum from entanglement point of view.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Scramble the phase: local rule → global dancing pattern
ΦSF ({z1 , ..., zN }) = 1 → unentangled product state
• Local dancing rules of a FQH liquid:
(1) every electron dances around clock-wise
(ΦFQH only depends on z = x + iy )
(2) takes exactly three steps to go around any others
(ΦFQH ’s phase change 6π)
�
→ Global dancing pattern ΦFQH ({z1 , ..., zN }) = (zi − zj )3
• A general theory of multi-layer Abelian FQH state:
�
�
1 �
I
I KII
I
J KIJ − 4 i,I |ziI |2
(zi − zj )
(zi − zj ) e
I ;i<j
I <J;i,j
Low energy effective theory is the K -matrix
Chern-Simons theory L = K4πIJ aI daJ
• An integer number of edge modes c = dim(K ) = number of layers.
Even K -matrix classifies all 2+1D Abelian topological order
(but not one-to-one)
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
• A systematic theory of single-layer non-Ableian FQH state:
Pattern of zeros Sa :
a-electron cluster has a relative angular momentum Sa Wen-Wang 08
S2 = 3
S2 = 1
S3 = 9
S3 = 5
S4 = 18
S4 = 10
ν=1/3 Laughlin
ν=1/2 Pfaffian
• Local dancing rules are enforced by Hamiltonian to lower energy.
• Only certain sequences Sa correspond to valid FQH states. Which?
• Different POZ Sa give rise to different topological properties
• A fractional number of edge modes c �= integer.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Sum over a subset of product states
To make topological order, we need to sum over many different
product
states, but we should not sum over everything.
�
all spin config. | ↑↓ ..� = | →→ ..�
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Sum over a subset of product states
To make topological order, we need to sum over many different
product
states, but we should not sum over everything.
�
all spin config. | ↑↓ ..� = | →→ ..�
• sum over a subset of spin config.:
�
�
�
�
2
|ΦZloops
�=
�
�
�
�
# of loops �
|ΦDS
�
=
(−)
�
loops
• Can the above wavefunction
be the ground states of
local Hamiltonians?
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category
Sum over a subset: local rule → global dancing pattern
2D
3D
• Local dancing rules of a string liquid:
(1) Dance
� while
� holding
� hands
� (no�open ends)
�
�
= Φstr
, Φstr
= Φstr
(2) Φstr
�
�
→ Global dancing pattern Φstr
=1
• Local dancing rules of another string liquid:
(1) Dance
� while
� holding
� hands
� (no�open ends)
�
�
= Φstr
, Φstr
= −Φstr
(2) Φstr
�
�
→ Global dancing pattern Φstr
= (−)# of loops
�
�
• Two string-net condensations → two topological orders: Levin-Wen 05
Z2 topo. order Sachdev Read 91, Wen 91 and double-semion topo. order.
Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014
Quantum entanglement, topological order, and tensor category