Download Calc BC 10.2 sequences

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Law of large numbers wikipedia , lookup

Big O notation wikipedia , lookup

Infinity wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Large numbers wikipedia , lookup

Georg Cantor's first set theory article wikipedia , lookup

Collatz conjecture wikipedia , lookup

Hyperreal number wikipedia , lookup

Proofs of Fermat's little theorem wikipedia , lookup

Sequence wikipedia , lookup

Transcript
Section 10.2
Sequences
In mathematics, a sequence is an ordered list of objects (or
events). Like a set, it contains members (also called elements
or terms), and the number of terms (possibly infinite) is
called the length of the sequence. Unlike a set, order
matters, and exactly the same elements can appear multiple
times at different positions in the sequence. A sequence is a
discrete function.
In this course we will only be interested in infinite sequences
with a rule for generating the terms (range values)
and using the set of whole numbers
or counting numbers as the domain.
Donโ€™t let the new notation confuse youโ€ฆ
๐‘“(๐‘ฅ) โ†’ ๐‘Ž(๐‘ฅ) โ†’ ๐‘Ž(๐‘›) โ†’ ๐‘Ž๐‘›
1
1
๐‘“ ๐‘ฅ = โ†’ ๐‘Ž๐‘› =
๐‘›
๐‘ฅ
๐’‡ ๐’™ ๐ข๐ฌ ๐œ๐จ๐ง๐ญ๐ข๐ง๐ฎ๐จ๐ฎ๐ฌ
๐’‚๐’ ๐ข๐ฌ ๐๐ข๐ฌ๐œ๐ซ๐ž๐ญ๐ž
Other notation:
โˆž
๐‘Ž๐‘› 1
or simply just ๐‘Ž๐‘›
expanded form: ๐‘Ž1 , ๐‘Ž2 , ๐‘Ž3 , โ€ฆ ๐‘Ž๐‘› ,โ€ฆ
In our example:
1
๐‘›
1 1 1
2 3 4
1
๐‘›
= 1, , , , โ€ฆ , , โ€ฆ
What interests us most is what happens to the terms as ๐‘› โ†’ โˆž
Since most discrete sequences have related continuous functions,
we will be using the same methods for
computing the limit as ๐‘› โ†’ โˆž
as were used to evaluate limits of continuous functions in chapter 2.
(including Lโ€™Hopitalโ€™s Rule)
Given an infinite sequence ๐‘Ž๐‘› , if lim ๐‘Ž๐‘› = ๐ฟ (a real number)
๐‘›โ†’โˆž
then the sequence is said to converge (to ๐ฟ).
If lim ๐‘Ž๐‘› = ±โˆž or does not exist,
๐‘›โ†’โˆž
we say the sequence diverges.
There are two main types of divergence:
1) Divergence to โˆž or โˆ’ โˆž (ex: 1, 2, 3, 4, 5, โ€ฆ)
2) Divergence by oscillation (ex: 1, 2, 1 , 2, 1 , 2, โ€ฆ)
Some oscillating sequences
never settle down to
approach a single number.
The car converged to the tree.
The rocket is diverging to
โ€ฆ or so says NASA.
โˆž
Ex: #4 (read the directions)
Step 1: line up the most
reasonable domain #โ€™s.
The numerators are all 1โ€™s.
The denominators are
all powers of โ€œ2โ€.
We need the โ€œuniversal
alternatorโ€ (โˆ’1)๐‘›
If we started with n=1โ€ฆ
1,
0
1 1
1
โˆ’ , ,โˆ’ ,โ€ฆ
2 4
8
1 2
3 โ€ฆ
1
?
1
2๐‘›
Final answer: ๐‘Ž๐‘› =
(โˆ’1)๐‘›+1
๐‘Ž๐‘› =
2๐‘›โˆ’1
(โˆ’1)๐‘›
2๐‘›
Ex: #20 (read the directions)
lim
๐‘›โ†’โˆž
2 + ๐‘๐‘œ๐‘ ๐‘›
=?
๐‘›
lim
๐‘›โ†’โˆž
๐‘Ž๐‘› =
2 + ๐‘๐‘œ๐‘ ๐‘›
๐‘›
Since โˆ’1 โ‰ค ๐‘๐‘œ๐‘ ๐‘› โ‰ค 1,
The numerator of each
term is a constant
between 1 & 3.
1
2 + ๐‘๐‘œ๐‘ ๐‘›
3
โ‰ค lim
โ‰ค lim
๐‘›โ†’โˆž
๐‘›โ†’โˆž ๐‘›
๐‘›
๐‘›
The limits on each end are = 0.
Final answer: this sequence converges to zero
by the Squeeze Theorem.
Ex: #30
๐‘Ž๐‘› =
๐‘›3
๐‘’ ๐‘›/10
โˆž
lim
๐‘›3
๐‘›โ†’โˆž ๐‘’ ๐‘›/10
Use Lโ€™Hopitalโ€™s Rule
โˆž
2
3๐‘›
= ?lim
Lโ€™Hopital againโ€ฆ
๐‘›โ†’โˆž .1๐‘’ ๐‘›/10
โˆž
6๐‘›
= lim
๐‘›โ†’โˆž .01๐‘’ ๐‘›/10
โˆž
One more time!
6
= lim
=0
๐‘›/10
๐‘›โ†’โˆž .001๐‘’
This sequence converges to zero.
Ex: #38
2
๐‘Ž๐‘› = 1 โˆ’ 2
๐‘›
๐‘›
This is the indeterminate form 1โˆž .
More precisely 1โˆ’
โˆž.
0 โ‰ค ๐‘Ž๐‘›๐‘ ๐‘ค๐‘’๐‘Ÿ โ‰ค 1
๐‘›
2
๐‘™๐‘› 1 โˆ’ 2
๐‘›
= lim
1
๐‘›โ†’โˆž
๐‘›
0
0
2
2
lim ๐‘™๐‘› 1 โˆ’ 2
= lim ๐‘› ๐‘™๐‘› 1 โˆ’ 2
๐‘›โ†’โˆž
๐‘›โ†’โˆž
๐‘›
๐‘›
1
โˆ’3
โˆ™
4๐‘›
2
1
4
1โˆ’ 2
= lim
โˆ’
๐‘›
2
๐‘›โ†’โˆž
๐‘›
= lim
โˆ’2
1
โˆ’
๐‘›โ†’โˆž
โˆ’๐‘›
๐‘›2
โˆ’4
= lim
2
๐‘›โ†’โˆž
๐‘›โˆ’
๐‘›
โˆ’4๐‘›
โˆ’4
= lim 2
= lim
=0
๐‘›โ†’โˆž ๐‘› โˆ’ 2
๐‘›โ†’โˆž 2๐‘›
Donโ€™t forget to
anti-
This sequence converges to ๐‘’ 0 = 1
2
2๐‘› + 3
Ex: #44 (read the directions) ๐‘Ž๐‘› =
โ†’
5
5๐‘› โˆ’ 17
Sequence mode is way too slow at
creating tablesโ€ฆso letโ€™s switch back to
function mode!
Ex: #50
๐‘Ž๐‘› =
3๐‘ ๐‘–๐‘›โˆ’1
3๐‘› โˆ’ 1
โ†’ 3๐‘ ๐‘–๐‘›โˆ’1
4๐‘› + 1
3
4
๐œ‹
=3
=๐œ‹
3
hmmmโ€ฆlooks like ๐œ‹ โ€ฆ
This sequence converges to ๐œ‹.
Are you thinking โ‰ˆ 3 ?