Download Unit 2 Overview

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Technetium wikipedia , lookup

Promethium wikipedia , lookup

Dubnium wikipedia , lookup

Chemical element wikipedia , lookup

Livermorium wikipedia , lookup

Oganesson wikipedia , lookup

Tennessine wikipedia , lookup

Neptunium wikipedia , lookup

Periodic table wikipedia , lookup

Valley of stability wikipedia , lookup

Isotope wikipedia , lookup

Extended periodic table wikipedia , lookup

Ununennium wikipedia , lookup

Unbinilium wikipedia , lookup

Transcript
Unit 2
Atomic Structure
An Introduction to the inner workings of the atom, it history, and its structure
Objective: To gain a deeper understanding of the role that each of the sub-atomic particles plays in
controlling chemical behavior.
In this unit, we will seek to learn how the three sub-atomic particles control outward chemical behavior
in elements. After reviewing the basic structure of the atom, we will review some of the key
experiments that lead to our current understanding of atomic structure. This unit is divided into three
parts, the proton, the neutron, and the electron. In part one, we will take a closer look at how the
number of protons is related to the identity of an element and how it played a critical role in the
development of the periodic table. We will seek to unlock some of the hidden information that the
periodic table possesses. In part two, we will relate the number of neutrons to the formation of
isotopes which are linked to radioactive behavior allowing us to study many applications of radioactivity
in everyday life. In part three, we will seek to understand how the electron is inextricably linked to
chemical bonding by controlling the formation of ions, responsible for 99% of all chemical reactions.
In this unit, make sure that you can say with confidence…
I can…
1. Recognize the organization on the periodic table, including families, metals, non-metals,
metalloids, and basic trends (electronegativity, reactivity)
2. Recognize that only the number of protons differentiates each element.
3. Discuss the history of the periodic table and its development.
4. Calculate the mass number of an element given the percent abundance and mass of each of the
most common isotopes of each element.
5. Use the periodic table to predict the number of protons, neutrons, and electrons in any atom.
6. Use the periodic table to predict the changes of the most common ions of the elements.
7. Recognize the nucleus and the number of neutrons contained within as the source of
radioactive behavior in an atom.
8. Calculate the number of neutrons in a variety of isotopes and convey that information using
isotopic notation
9. Discuss the topics of mass defect and nuclear binding energy.
10. Recognize and write equations for the three most common forms of nuclear decay, alpha, beta,
and gamma radiation.
11. Balance nuclear equations
12. Predict the stability of an isotope (radioactive behavior) by inspecting the band of stability.
13. Calculate the quantity of radioactive material remaining after a given time by applying the
concept of half-life.
14. Recognize and discuss several common application and uses of radioactivity.
15. Recognize the difference between nuclear fission and nuclear fusion and discuss application of
both concepts.
Book Reading:
Section One – The Proton
2.1 – The Atomic Theory
2.2 – The Structure of the Atom (The Proton and the Nucleus, The Nuclear Atom)
2.4 – The Periodic Table
7.1 – The Development of the Periodic Table
7.2 – The Modern Periodic Table
7.3 – Effective Nuclear Charge
7.4 – Periodic Trends in Properties of Elements
Section Two – The Neutron
2.2 – The Structure of the Atom (Radioactivity, The Neutron)
2.3 – Atomic Number, Mass Number, and Isotopes
2.5 – The Atomic Mass Scale and Average Atomic Mass
20.1 – Nuclei and Nuclear Reactions
20.2 – Nuclear Stability
20.3 – Natural radioactivity
20.4 – Nuclear Transmutation
20.5 – Nuclear Fission
20.6 – Nuclear Fusion
20.7 – Uses of Isotopes
20.8 – Biological Effects of Radiation
Section Three – The Electron
2.2 – The Structure of the Atom (Discovery of the Electron)
8.1 – Lewis Dot Symbols