* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Detailed information may be found here
Supersymmetry wikipedia , lookup
Topological quantum field theory wikipedia , lookup
Eigenstate thermalization hypothesis wikipedia , lookup
Elementary particle wikipedia , lookup
Quantum mechanics wikipedia , lookup
Bell's theorem wikipedia , lookup
Uncertainty principle wikipedia , lookup
Quantum tunnelling wikipedia , lookup
Scalar field theory wikipedia , lookup
Quantum gravity wikipedia , lookup
Standard Model wikipedia , lookup
Electron scattering wikipedia , lookup
Nuclear structure wikipedia , lookup
Quantum chromodynamics wikipedia , lookup
Quantum field theory wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
ATLAS experiment wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
Quantum state wikipedia , lookup
Mathematical formulation of the Standard Model wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Quantum chaos wikipedia , lookup
Quantum logic wikipedia , lookup
Relational approach to quantum physics wikipedia , lookup
Compact Muon Solenoid wikipedia , lookup
Old quantum theory wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Introduction to quantum mechanics wikipedia , lookup
Renormalization wikipedia , lookup
Theory of everything wikipedia , lookup
Canonical quantization wikipedia , lookup
Peter Kalmus wikipedia , lookup
Future Circular Collider wikipedia , lookup
History of quantum field theory wikipedia , lookup
University of Cape Town Department of Physics — Honours booklet 2016 — Department of Physics University of Cape Town Private Bag X3 Rondebosch 7700 · South Africa www.phy.uct.ac.za/phy/courses/PHY4000W Contents 1 General information 1.1 Structure of the course . . . . . . . . 1.2 Admission criteria . . . . . . . . . . 1.3 Standard of the course and workload 1.4 Module choice . . . . . . . . . . . . . 1.5 Research project . . . . . . . . . . . 1.6 Duly performed (DP) certificate . . . 1.7 Examinations . . . . . . . . . . . . . 1.8 Aggregation of marks . . . . . . . . 1.9 Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3 3 4 4 5 5 6 7 2 Description of Modules 2.1 Compulsory and Physics-elective Modules . . 2.1.1 Classical Mechanics (CM) . . . . . . . 2.1.2 Computational Physics (CP) . . . . . 2.1.3 Electrodynamics 1 (ED1 ) . . . . . . . 2.1.4 Electrodynamics 2 (ED2 ) . . . . . . . 2.1.5 Kick-off module (KO) . . . . . . . . . 2.1.6 Nuclear Physics (NP) . . . . . . . . . 2.1.7 Physics Education (PE) . . . . . . . . 2.1.8 Particle Physics (PP) . . . . . . . . . 2.1.9 Quantum Field Theory (QF) . . . . . 2.1.10 Quantum Mechanics 1 (QM1 ) . . . . . 2.1.11 Quantum Mechanics 2 (QM2 ) . . . . . 2.1.12 Relativistic Quantum Mechanics (RQ) 2.1.13 Statistical Physics (SP) . . . . . . . . 2.1.14 Solid State Physics (SS) . . . . . . . . 2.2 Additional Modules . . . . . . . . . . . . . . 2.3 Research Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 9 10 11 12 12 13 14 15 15 16 17 17 18 19 20 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents 3 Lecture time table iv 31 1 General information The Department of Physics at the University of Cape Town (UCT) offers a one-year BSc Honours degree course with the course code PHY4000W: BSc (HONS) in PHYSICS. This course is usually taken by a student in the fourth year of university study, after having graduated with a BSc in Physics. The BSc Honours degree is the gateway towards further postgraduate degrees in Physics, such as the MSc and PhD degrees. 1.1 Structure of the course The Physics Honours course consists of a supervised Research Project counting 3 units, and 9, 10 or 11 lecture modules, each worth 1 unit. These lecture modules have 20 lectures (45 minutes long), reading assignments, tutorial sessions and/or problem sets, or equivalent. The modules are categorized as: • Compulsory Physics modules (8 units, including the Research Project) • Physics Elective modules (choose at least 2 modules) • Additional modules The Compulsory modules contribute 8 units, i. e. two third of the minimum number of 12 units for the Honours course. The course is to be complemented by at least 2 Physics Elective modules and, in case (to bring the total number of units up to 12, 13 or 14), an appropriate number of Additional modules offered by other departments. The Honours course will kick off in the UCT orientation week, with activities to refresh mathematics skills, combined with a Mathematica and (V)Python introduction/recap, and discussions on the nature of physics and physics education. This ‘Kick-off’ module does not count as a unit, but it is compulsory to meet the DP criteria (see Section 1.6). 1 1 General information semester units Compulsory Kick-Off module (KO) Research Project (RP) Electrodynamics (ED1 + ED2 ) Quantum Mechanics (QM1 + QM2 ) Statistical Physics (SP) 1 1+2 1 1 2 – 3 2 2 1 Physics Elective Classical Mechanics (CM) Computational Physics (CP) Nuclear Physics (NP) Particle Physics (PP) Physics Education (PE) Quantum field theory (QF) Solid State Physics (SS) Relativistic Q-Mechanics (RQ) 1 1 2 2 1+2 2 2 2 1 1 1 1 1 1 1 1 Additional The modules expected to be offered1 are: modules Advanced Math Methods 1+2 [MAM] General Relativity [MAM] Programming for Scientists/Engineers [CERECAM] Continuum Mechanics [CERECAM] General Astrophysics [AST] Diagnostic Radiology [Med PHY] Radiotherapy [Med PHY] Nuclear Medicine [Med PHY] ... 1+2 1 1 1 1 1 1 2 . 1+1 1 1 1 1 1 1 1 . Outlines of the Compulsory modules and the Physics Elective modules are given in Chapter 2; for the time table see Chapter 3. 1 2 The Physics Department reserves the right to delete Physics modules, or add modules, or modify the list should staffing or other factors so dictate; for updates see the course website www.phy.uct.ac.za/phy/courses/PHY4000W. Information on the additional modules is given by the respective departments, see also Section 2.2. 1.2 Admission criteria 1.2 Admission criteria Admission to the Physics Honours course is at the discretion of the Dean of Science and the Head of Department of Physics, who will consult the Honours course convenor. Normally the following criteria are used: • a pass mark of ≥ 60% in UCT third year Physics courses, or equivalent, and • a mathematical background strong enough to ensure success in the course, which requires a second year UCT Mathematics or Applied Mathematics course or equivalent. For a Theoretical/Mathematical Physics oriented choice of modules, a pass mark of ≥ 60% in a third year UCT Mathematics or Applied Mathematics course, or equivalent, is required. In exceptional cases a student, who does not meet the above criteria, may be set reading and study material, and, upon satisfying the Head of Department that they have mastered this material, may be admitted. 1.3 Standard of the course and workload The Physics Honours course is intensive. Coming after a three year general BSc degree, where a student has majored in two, and sometimes only one, subject, the Honours degree prepares a student for • beginning a research MSc degree by dissertation • doing well in the GRE examination for US graduate school • entry into UK, European or US post-graduate degree, if the student has done exceptionally well. The content of the Physics Honours course is similar that of senior undergraduate courses in good UK or US universities. 3 1 General information A rough estimate of the workload for one typical lecture module is 20 lectures (incl. question time) reading before and after lecture 5 problem sets/tutorials independent study total 20 20 20 20 hours hours hours hours 80 hours Accordingly, a course of the minimum 12 units would take about 960 hours. Divided by 120 days (24 weeks in academic term) this equates to 8 hours a day. The actual workload, including the research project, and including preparation for examinations, will depend on student preparedness and ability, and may well be 20 percent higher than this, and will fluctuate throughout the year. 1.4 Module choice The broad content of a modules is decided between the Head of Department, who bears ultimate responsibility for the academic content of the course and its modules, the Honours convenor, and the lecturer concerned. A student must declare a provisional choice of modules at registration. He or she can modify this choice by 5pm on the Friday at the end of the first lecture week. A student can thereafter change the module choice (pickup, drop, change) only if the Head of Department, after consultation with the Honours convenor, agrees. 1.5 Research project Research projects must, in opinion of the Head of Department and after consultation with the Honours convenor, senior colleagues and the project supervisor, be aligned with the academic nature of the course, e. g. experimental physics, or theoretical physics, or mathematical physics. The Head of Department will decide if each proposed research project (title, supervisor, description of nature of research project) is acceptable. Available projects are described in Section 2.3. 4 1.6 Duly performed (DP) certificate A project has to be choosen by each student by end of February. A short progress report (1/2 – 1 page) is to be submitted one week before last day of lectures of the first semester. If the Head of Department, after consultation with the Honours convenor, feels there has not been sufficient progress, a letter will be sent to the student and the supervisor, warning that the course DP certificate (see Section 1.6) may be withheld. At the beginning of the second semester a informal 10’-presentation is to be given on the work done so far. The final project report, typically 30+ pages,2 is to be submitted by a date to be set by the Head of Department and the Honours convenor (normally one week before lectures end); otherwise the DP certificate will be withheld. This report has a weight of 80% towards the project mark; assessed by the supervisor, a referee and the Honours convenor are the student’s ability to conduct (supervised) research, including literature review, performing necessary calculations and/or experimental work, analysis of results as well as their presentation and discussion. Around the report submission date, a 20’ presentation of the research project is to be given, which will be assessed by the supervisor, the referee, the Course convenor and the Head of Department and which will contribute to the project mark with a weight of 20%. 1.6 Duly performed (DP) certificate Only students who receive a duly performed (DP) certificate, normally issued one week before the last day of lectures, will be allowed to write the October/November examinations. The DP certificate criteria are: • a class record of at least 30% for all problem sets and class tests • convincing progress in the Research Project, in particular the report being submitted • attendance of i) the ‘Kick-Off’ module and ii) at least two thirds of the Departmental colloquia. 1.7 Examinations Certain modules will be examined in the May/June examination period. Other modules will be examined in the October/November examination period. Ex2 Theses from previous years are available in the Physics library. 5 1 General information ceptionally, by agreement with students and lecturing staff, the Head of Department may direct examinations to take place outside these periods. A student must declare which modules he or she will sit for examination by a date to be set by the Head of Department, usually at the beginning of the 3rd last week of lectures. Results of the examination of all these modules will be used in a final aggregation by the Honours examination committee, a body whose membership is decided by the Head of Department, but typically will include the Head of Department, the Honours convenor, lecturers, project supervisors and project readers as well as the external examiner(s). This Honours examination committee is advisory to the Head of Department, who submits results to the Science Faculty Examination Committee (FEC) for decision, and ultimate ratification by the University Senate. 1.8 Aggregation of marks The final course mark is the mean of the individual module marks, unless the Head of Department shows good cause, in writing, for deviating from this. In the average, the research project has a triple weight compared to the lecture modules (each worth one unit). For a module choice with more than the minimum number of 9 lecture modules, only the 9 best modules are taken into account (besides the research project). The pass/fail decision is based on this final mark exceeding the pass mark of 50%, and is further subject to the subminimum criteria of • obtaining a minimum mark of 50% in the Research Project • passing two thirds of the chosen lecture modules • achieving a mark of ≥ 35% in all but two of the Compulsory lecture modules. A student who fails the Honours course may not be re-admitted. 6 1.9 Facilities 1.9 Facilities The Department has a Postgraduate Computer Lab on Level 4 of the RW James Building which is open to Physics Honours students. The 8 QuadCore+GPU PC’s run both Windows and Linux; available software includes LATEX, Open/MS Office, Mathematica and V/Python. A printing facility is available (printing abuse would be detected). Details of Lab and Computer usage can be found on posters located around the Lab. For further information contact the Lab administrator Kerwin Ontong, [email protected]. The Honours students have access to the Physics Frahn library on Level 5 of the RW James Building, which provides also quiet working space. Contact Gregor Leigh, [email protected], for further details. Last but not least: the Duncan Elliott room on Level 3 of the RW James Building is a place to meet other Postgrad students and members of staff, to discuss Physics and more . . . and, of course, to have a cup of tea or coffee after the third lecture period and/or in the afternoon. 7 2 Description of Modules 2.1 Compulsory and Physics-elective Modules 2.1.1 Classical Mechanics (CM) Lecturer 20 Lectures 5 Tutorials Class Test Exam A/Prof R. Fearick, [email protected] First semester counting 25% towards module mark counting 25% towards module mark 2 hours, in May/June, counting 50% towards module mark Outline Newtonian mechanics: space and time, Newton’s laws, systems with 1 degree of freedom, central forces, non-inertial frames — Lagrange formalism: the route to Lagrange’s equations, calculus of variations, Hamilton’s principle of least action, conserved quantities, transformations of the Lagrangian — Hamilton formalism: the Hamiltonian, phase space, Poisson brackets, canonical transformations; Advanced methods. Literature [1] F. Scheck, Mechanics: From Newton’s laws to deterministic chaos, Springer 2005. [2] J. V. Jose and E. J. Saletan, Classical Dynamics: A Contemporary Approach, Cambridge 1998. 9 2 Description of Modules 2.1.2 Computational Physics (CP) Lecturer 20 Lectures 5 Tutorials Test Exam Dr T. Dietel, [email protected] Second semester counting 25% towards module mark Take-home, counting 25% towards module mark Take-home, in October/November, counting 50% towards module mark Students are expected to be familiar with at least one programming language. Outline In the real world, very few deterministic problems can be solved analytically. Furthermore, many physical processes are stochastic. In both cases, physicists look to computers to shed light on the physics. In this course, several of the more ubiquitous numerical methods will be introduced that form part of most physicists’ toolkits. Topics to be presented will be drawn from: Monte Carlo techniques of sampling, integration and simulation — Numerical calculus (including integration using orthogonal polynomials) — Function interpolation, extrapolation and fitting (including the technique of Smoothed Particle Hydrodynamics) — ODE and PDE solution. Literature [1] R. de Vries, A first course in computational physics, Wiley 1994. [2] A. L. Garcia, Numerical methods for physics, Prentice-Hall 1994. [3] N. J. Giordano, Computational Physics, Prentice-Hall 1997. [4] T. Pang, An introduction to computational physics, Cambridge 2006. [5] W. H. Press et al., Numerical recipes, Cambridge (various editions for different programming languages). 10 2.1 Compulsory and Physics-elective Modules 2.1.3 Electrodynamics 1 (ED1 ) Lecturer 20 lectures 5 tutorials Class test Exam A/Prof H. Weigert, [email protected] First semester, first quarter counting 25% towards module mark counting 25% towards module mark 2 hours, in May/June, counting 50% towards module mark Electrodynamics is an “old” theory dating back into the formative years of a science later to be called physics. Yet it is strangely modern: It is in fact fully relativistic (and was so long before Einstein); it is usually taught before quantum mechanics, yet many of the tools usually only properly taught in quantum mechanics have essential uses in electrodynamics (were in fact invented there to be reused and refined to formulate quantum mechanics) and in particular, it is the precursor of Quantum Electrodynamics (QED) a key part of our Standard Model of Particle Physics, one of our deepest microscopic theories of nature. In this honours course, were you, the students should have at least a smattering of all of these references at your disposal, I will attempt to build on these connections to help you develop a better sense of the unity of physics as a science, hopefully breaking a few barriers to scientific thinking in the process. Outline History and perspective – introduction to vector calculus – basic principles of electrostatics – solving differential equations: Green’s functions, boundary conditions, complete sets of states – electrostatics in media – magneto-statics – magneto-statics in media – electrodynamics and Maxwell’s equations. Literature [1] J. D. Jackson, Classical Electrodynamics, Wiley 1980. [2] A. Zangwill, Modern electrodynamics, Cambridge University Press 2013. [3] L. D. Landau and E. M. Lifshitz, Vol. 2: The Classical Theory of Fields, Butterworth-Heinemann 1980. [4] L. D. Landau and E. M. Lifshitz, Vol. 8: Electrodynamics of Continuous Media, Butterworth-Heinemann 1984. 11 2 Description of Modules 2.1.4 Electrodynamics 2 (ED2 ) Lecturer 20 lectures 5 tutorials Class Test Exam A/Prof H. Weigert, [email protected] First semester, second quarter counting 25% towards module mark counting 25% towards module mark 2 hours, in May/June, counting 50% towards module mark Outline Relativistically covariant formulation of electrodynamics – gauge potentials and a count of degrees of freedom – electrodynamics as a classical field theory – Greens functions revisited: Fourier transforms and the use of residues – moving charges and radiation – multipole expansions and spherical harmonics – electromagnetic waves in vacuum and in media – from electromagnetism to ray optics and beyond. Literature Same as for module ED1 . 2.1.5 Kick-off module (KO) Activities in the orientation week involving several lecturers and dealing with: • the nature of physics and physics education, • mathematical tools and skills for the Honours course, combined with an introduction to Mathematica, and a Python/VPython refresher, largely discussion and tutorial-based, with hands-on activities, team work as well as homework. No grades, but required for the DP certificate. Outline Intro to philosophy and nature of physics; Role of mathematics and modelling; Why is physics hard to learn? (A perspective from cognitive psychology); role of practical work in learning physics; Learning to think computationally. — 12 2.1 Compulsory and Physics-elective Modules Introduction to Mathematica; linear algebra and vector calculus; complex analysis; differential equations; Fourier analysis and integral transforms; numerical methods. 2.1.6 Nuclear Physics (NP) Lecturer 20 lectures problem sets practicals Exam Dr T. Leadbeater, [email protected] Second semester counting 20% towards module mark counting 30% towards module mark in October/November, counting 50% towards module mark Outline This module will feature the practical aspects of nuclear physics, in particular detection and measurement of particle and gamma radiation. Topics will include the basic nuclear processes in radioactive sources, the production of particle radiation beams, particle accelerators, the passage of radiation through matter, radiation protection, the general characteristics of detectors, ionization detectors, scintillation detectors, semiconductor detectors, the statistical treatment of radiation measurements, methods of pulse analysis, spectral analyses, nuclear electronics, digital pulse processing, applications in nuclear and particle physics. The module includes five practical exercises associated with radiation detector design and application. Literature [1] G. F. Knoll, Radiation Detection and Measurement, Wiley 2010. [2] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer 1994 13 2 Description of Modules 2.1.7 Physics Education (PE) Lecturer 20 lectures 2 essays/projects Exam A/Prof S. Allie, [email protected] seminar style format, First and second semester counting 50% towards module mark Take-home: 2 essays, in October/November, counting 50% towards module mark Outline While most of physics involves learning various content areas such as nuclear, particle, solid state etc., physics education deals with how we learn physics. Although physics education has a long history the area called Physics Education Research (PER) is a more recent addition to the sub-disciplines of physics. For example, since 2005 there is a journal dedicated to PER within the influential Physical Review series, namely Physical Review Special Topics Physics Education Research (PRSTPER). Several North American universities now advertise posts for lecturers in physics departments who have completed PhDs in PER. It is also interesting to note that other disciplines such as Chemistry and more recently Biology are also following this model. This discipline focussed approach to researching educational issues in science disciplines is referred to as (Science) Discipline Based Education Research (DBER). The present course is aimed as an introduction to the area of PE and PER with a particular focus on issues pertaining to the teaching and learning of physics at university level. The list below indicates the main themes that will form the basis of the course. Since the themes are inter-linked the order of presentation is not linear but should rather be thought of as ‘topic hubs’ in a network. • What is Physics? • Exploring the ‘nature’ of student difficulties • Issues in cognitive science that could inform understanding the learning physics • Teaching physics • Physics Education Research Literature will be provided. 14 2.1 Compulsory and Physics-elective Modules 2.1.8 Particle Physics (PP) Lecturer 20 lectures 5 tutorials 1 journal review Class test Exam Dr S. Yacoob, [email protected] Second semester counting 25% towards module mark counting 10% towards module mark counting 15% towards module mark 2 hours, in October/November, counting 50% towards module mark Outline Classification of elementary particles — Relativistic kinematics, symmetries, Feynman calculus — Gauge theories: QED, Electroweak theory, QCD — Neutrino oscillations — Beyond the Standard Model. Literature [1] D. Griffiths, Introduction to Elementary Particle Physics, Wiley 2005. 2.1.9 Quantum Field Theory (QF) Lecturer 10 lectures + self study Dr W. A. Horowitz, [email protected] Second semester, 4th quarter (equivalent to 20 lectures) tutorials 1 independent project counting 50% towards module mark counting 50% towards module mark Outline Quantizing gauge fields. Fadeev-Popov gauge fixing. Non-abelian fields. Tree level calculations. Renormalization. Literature [1] M. E. Peskin and D. V. Schroeder, An introduction to Quantum Field Theory, Addison Wesley 1995. [2] G. Sterman, An Introduction to Quantum Field Theory, Cambridge 1993. 15 2 Description of Modules [3] L. H. Ryder, Quantum Field Theory, Cambridge 1996. [4] M. Srednicki, Quantum Field Theory, Cambridge 2007. 2.1.10 Quantum Mechanics 1 (QM1 ) Lecturer 20 lectures 5 tutorials 1 project Class test Exam Dr A. Hamilton, [email protected] First semester, first quarter counting 20% towards module mark counting 15% towards module mark counting 15% towards module mark 2 hours, in May/June, counting 50% towards module mark Outline Examples of quantum systems: semi-bound state [demo] and the Stern-Gerlach experiment — Mathematical tools of quantum mechanics: Hilbert spaces, Dirac notation, operators, discrete and continuous bases, matrix versus wave mechanics — Postulates of quantum mechanics: observables and measurements, time evolution, symmetries and conservation laws, classical to quantum mechanics — Harmonic Oscillator using matrix mechanics — Angular Momentum: orbital and spin angular momentum, rotations in quantum mechanics, addition of angular momentum. Literature [1] N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley 2009 (primary text, students recommended to have a copy). [2] J. J. Sakurai, Modern Quantum Mechanics, Addison Wesley 2010. [3] D. Griffiths, Introduction to Quantum Mechanics, Prentice Hall 1994. 16 2.1 Compulsory and Physics-elective Modules 2.1.11 Quantum Mechanics 2 (QM2 ) Lecturer 20 lectures 5 tutorials Class test Exam Prof A. Peshier, [email protected] First semester, second quarter counting 25% towards module mark counting 25% towards module mark 2 hours, in May/June, counting 50% towards module mark Outline Many-particle quantum systems: exchange symmetry, Pauli exclusion principle, spin-statistics theorem — Approximation methods: time-independent perturbation theory, Fermi’s golden rule, variational methods, WKB approximation — Scattering theory: Lippman-Schwinger equation, Born approximation, Optical theorem — Path integral formalism. Literature [1] J. J. Sakurai, Modern Quantum Mechanics, Addison Wesley 1993. [2] L. D. Landau and E. M. Lifshitz, Vol. 3: Quantum Mechanics, ButterworthHeinemann 1981. [3] A. Messiah, Quantum Mechanics, Dover 1999. [4] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Dover 2010. 2.1.12 Relativistic Quantum Mechanics (RQ) Lecturer 20 lectures 5 tutorials Exam Dr W. A. Horowitz, [email protected] Second semester, 3rd quarter counting 50% towards module mark 2 hours, in October/November, counting 50% towards module mark Outline Relativistic invariance, equations and Lagrange densities for Klein-Gordon and Dirac and vector fields — Elements of a quantum theory of fields: scalar, 17 2 Description of Modules vector and spinor fields — Particle interactions, simple Feynman diagrams and scattering matrix; cross sections and decay rates; phase space. Literature [1] M. E. Peskin and D. V. Schroeder, An introduction to Quantum Field Theory, Addison Wesley 1995. [2] G. Sterman, An Introduction to Quantum Field Theory, Cambridge 1993. [3] C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw Hill 1980. [4] M. D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge 2014. [5] L. H. Ryder, Quantum Field Theory, Cambridge 1996. [6] M. Srednicki, Quantum Field Theory, Cambridge 2007. [7] L. S. Brown, Quantum Field Theory, Cambridge 1994. [8] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, McGraw Hill 1963. 2.1.13 Statistical Physics (SP) Lecturer 20 lectures 5 tutorials Class test Exam Prof A. Peshier, [email protected] First semester counting 25% towards module mark counting 25% towards module mark 2 hours, in May/June, counting 50% towards module mark Outline Thermodynamics: extensive and intensive variables, Thermodynamic potentials, Maxwell relations, phase coexistence — Postulates of Statistical Physics: Phase space of classical and quantum systems, Liouville’s theorem, systems in contact with each other, ensembles, fluctuations — Interaction-free systems: harmonic oscillators, Bose and Fermi gases, Bose-Einstein condensation — Interacting systems & phase transitions: cluster expansion and Van-der-Waals 18 2.1 Compulsory and Physics-elective Modules equation of state, Ising model, mean field approximation, Landau theory, basics of renormalization group approach, numerical simulations. Literature [1] M. Kardar, Statistical Physics of Particles, Cambridge 2007. [2] L. D. Landau and E. M. Lifshitz, Vol. 5: Statistical Physics, ButterworthHeinemann 1980. [3] R. K. Pathria, Statistical Mechanics, Butterworth-Heinemann 1996. [4] F. Schwabl, Statistical Mechanics, Springer 2005. 2.1.14 Solid State Physics (SS) Lecturer 20 Lectures 5 tutorials 2 paper reviews Class test Exam A/Prof M. Blumenthal, [email protected] Second semester counting 25% towards module mark counting 10% towards module mark counting 15% towards module mark 2 hours, in October/November, counting 50% towards module mark Outline Review of Bulk Semiconductors: Crystal structure, energy band structure, doping — Introduction to Low Dimensional Systems: Length and energy scales, overview of fabrication techniques and possibilities in nano-physics, applications of low-dimensional physics — Electron Properties in Low Dimensional Systems: Band engineering, heterostructures, free electron gas, 2D electron gas, 1D electron gas, 0D electron gas, density of states — Quantum Transport: 1D wires, 0D quantum dots, Coulomb blockade, resonant tunnelling, charge detection, single-electron dots, electron pumps and turnstiles, surface-acoustic-wave current source — Electrons in magnetic fields: Landau levels, Shubnikov-De Haas effect, integer quantum Hall effect, edge states, Aharonov-Bohm effect. 19 2 Description of Modules Literature [1] C. Kittel, Introduction to Solid State Physics, Wiley 1996. [2] N. W. Aschcroft and N. D. Mermin, Solid State Physics, Holt, Rinehard and Winston 1976. [3] M. J. Kelly, Low-dimensional Semiconductors: Materials, Physics, Technology, Devices, Clarendon Press 1996. [4] J. H. Davies, The Physics of Low-Dimensional Semiconductors: An introduction, Cambridge 1997. [5] E. L. Wolf, Nanophysics and Nanotechnology, Wiley 2007. 2.2 Additional Modules Other departments, e. g. Applied Mathematics or Medical Physics, may offer courses/modules with sufficient overlap to physics, which then could be selected as additional modules. Consult the course coordinator. 20 2.3 Research Projects 2.3 Research Projects A/Prof M. Blumenthal, [email protected] Solid state physics, Cryogenics Measuring pulse tube cooling power. Cooling samples using cryogens such as helium is becoming prohibitively expensive, especially in South Africa. Pulse tube refrigerators (PTRs) allow dry cooling (without the need for cryogens) down to a temperature of 4K. The working mechanism is a variation on a Sterling cooler but without moving parts. UCT physics has recently installed a dry fridge that is precooled using a 2-stage PTR. The students primary goal will be to design a water or nitrogen cooling system to be made by the workshop, to measure the cooling power of the PTR, and assess whether it can be improved by such a system. Aims: Write a short literature review chronicling the advancements of dry cryostats. Design and build a cooling system for the PTR. Measure the improvement in cooling power. Secondary aims: Design and build a working demonstration pulse tube based on a Sterling cooler. Prof A. Buffler, [email protected] Applied nuclear physics (i) Calibration of a new organic liquid scintillator. Recently there has been a high level of interest across the world in the use of well-characterized neutron beams that span a wide range of applications. These include radiation protection at high-energy accelerators and during space missions, radiation hardness testing of electronic devices, and measurements for innovative nuclear energy systems. The fast neutron beam facility at iThemba LABS is recognised as having unique features for application-oriented work, as well as for neutron physics. Much of the recent work at the iThemba LABS cyclotron involving fast neutron beams has been within the long and successful collaboration between the Physics Department at the University of Cape Town and the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. We have recently acquired a new digitally-stabilized organic liquid scintillator (NE213) which will be used at iThemba LABS for neutron beam fluence measurements. One of the features of NE213 is that signals associated 21 2 Description of Modules with neutrons and gamma-ray within the detector can be separated using the technique of pulse shape discrimination. This project will calibrate this new detector using both gamma-rays and neutrons. Experimental work will be carried out at UCT. An interest in applied nuclear physics and data analysis is a prerequisite. (ii) Using PEPT to explore the fluid dynamics of vortex-type flow. Positron Emission Particle Tracking is based on the tracking of a single tracer particle which has been labelled with a radionuclide that decays via beta-plus decay. The location of the particle is obtained by the triangulation of events associated with the detection of pairs of annihilation gamma rays in a modified “positron camera”. The trajectory fields derived from PEPT can be employed to characterise kinematic distributions of the ensembles of flow in very many contexts. An interesting and very common system of flow is the vortex-shaped field found in many industrial systems such as cyclones, which are used to separate particles from a gas, for example, and indeed in the typical food blender found in the kitchen. This project will explore the capability of PEPT to measure the parameters necessary to describe vortex-shaped flow, and use these measured parameters to comment on the accuracy of analytical descriptions of such flow fields. The project will require interest in fluid dynamics and include experiments at the PEPT Cape Town facilities at iThemba LABS. Working knowledge of MATLAB will help. em. Prof J. Cleymans, [email protected] High energy theoretical physics Transverse Momentum Distributions at the Large Hadron Collider. Collisions at the LHC produce a large number of secondary particles. These provide information about the basic dynamics of strongly interacting particles at very high energies. The project will teach students about measurements at the LHC and about the interpretation of results. The description of data will make use of the Tsallis distribution which has been shown to be accurate over 14 orders of magnitude. em. Prof C. Comrie, [email protected] Solid State Physics, Microelectronics Stability of GeSn strained layers during thermal annealing. At present over 95% of microelectronic devices which are produced are based 22 2.3 Research Projects on silicon even though many other semiconductors have superior properties. It has been shown that the mobility of electrons and holes in Si can be improved by alloying si with Ge, which has a larger atomic size causing strain in the SiGe layer which alters the shape of the electronic bands thus reducing the effective mass of the carriers. Germanium has superior carrier mobility to silicon, but the same effect can be achieved by alloying Ge with tin. Unfortunately the diamond structure of α-Sn is unstable above 13o C making it difficult to incorporate Sn in Ge and thermodynamically stable Sn incorporation is thus limited to about 1% – too low to cause the desired properties. Despite these constraints careful preparation has enabled alloys with Sn levels of around 10% to be achieved. The thermal stability of these films is however open to question. Rutherford backscattering spectrometry (RBS) using 2 MeV alpha particle will be used to monitor the Sn stability in GeSn during thermal annealing while RBS/channelling will be used to confirm that the layers were indeed strained by the Sn incorporation, and to establish if any relaxation occurred during thermal annealing. Dr T. Dietel, [email protected] High energy experimental physics (i) Photon and Neutral Pion Measurements with ALICE. The ALICE Experiment at CERN’s Large Hadron Collider studies nuclear matter under extreme conditions: in ultra-relativistic collisions of lead nuclei, the nucleons are expected to break up or ‘melt’, and a novel state of matter, the quark-gluon plasma (QGP) is formed. In each collision, only a small amount of QGP is produced, which expands rapidly before it freezes out into a gas of hadrons. Photons provide unique insights into the QGP: thermally produced photons, similar to black-body radiation, indicate that the temperature in the fireball reaches several trillion degrees, and prompt photons allow a direct look into the earliest moments of the collision. A huge background from the decay of neutral pions complicates the measurements and has to be subtracted on a statistical basis. In this project, we will measure photons and neutral pions via their conversion into electron-positron pairs. This method provides the best resolution for low photon energies and is therefore ideally suited for the measurement of thermal photons. The resulting photon and pion spectra are the basis for the statistical subtraction to extract the spectra of direct photons, i.e. photons that 23 2 Description of Modules are not produced in the decay of neutral pions or other hadrons. (ii) ALICE Transition Radiation Detector. The Transition Radiation Detector (TRD) of the ALICE Experiment at CERN’s Large Hadron Collider is a gas detector to measure charged particles and identify electrons. One chamber of the TRD is installed at UCT and gives students the opportunity to work with state-of-the art detector technology. We plan to use the chamber in the 3rd year laboratories for the first time in 2016. The purpose of this honours project is to complete the setup of the TRD chamber at UCT, use the chamber to record cosmic ray events and analyze the recorded data. The first part of the projects will require some handson work to commission gas supply and high-voltage power supplies as well as trigger detectors. In the second part, the existing analysis software will be enhanced to visualize the recorded events, and we will be able to study the signals generated by the detector under different conditions and measure some properties of cosmic radiation, like the angular distribution of cosmic rays. (iii) Track Reconstruction with the ALICE TRD. The ALICE Detector at CERN’s Large Hadron Collider will be upgraded in 2019/20 to take advantage of the increasing LHC luminosity and to provide 100 times more events for high precision measurements. As part of this upgrade, the Transition Radiation Detector (TRD) will receive new readout electronics, resulting in significant changes in the raw data format to reduce the data volume to less than 10 gigabytes per second. In this project, we will reconstruct the trajectories of particles traversing the ALICE Detector and the TRD, using data as it will be available after the upgrade. The reconstruction algorithms will have to provide precise estimates for the particles position and momentum, but also be very fast to process the incoming data stream of several gigabytes per second. We will use Kalman filters, which can efficiently handle the different sources of uncertainly, but are usually restricted to normally distributed errors. A part of this project will be to find a method to extend Kalman filters to the non-gaussian errors found in the ALICE TRD. 24 2.3 Research Projects em. Prof C. Dominguez, [email protected] High energy theoretical physics Electromagnetic structure of the nucleon. The nucleon (proton/neutron) is not a point particle, as it is a bound state of three quarks. This implies, among other things, that when probed with virtual photons the nucleon exhibits a non trivial electromagnetic structure. In technical jargon this is referred to as the electromagnetic form factors of the nucleon. It provides information on the electric charge and magnetic moment distribution of the nucleon. At present there is substantial experimental data on these form factors. The challenge is to predict these form factors from Quantum Chromodynamics (QCD), the theory describing the strong interactions among quarks and gluons. The project will deal with comparing theoretical results obtained in a QCD inspired framework with data. No previous knowledge of QCD is required. If results are successful (as expected), then this would very likely result in a publication in a top journal. Previous Honours students who did similar projects published papers. Dr A. Hamilton, [email protected], and Dr S. Yacoob, [email protected] High energy experimental physics (i) Searching for Same Sign WW Scattering in ATLAS. In this project the student will use ATLAS data to identify a class of events in which two W-bosons are produced with the same electromagnetic charge. These interactions are extremely rare and have not been conclusively observed before. This project will require computer programming skills including Linux/Unix OS, python, and C++. You will work closely with the post-graduate students working in the UCT-ATLAS group. (ii) Cosmic Rays. Investigate the feasibility of a large area ground based cosmic ray detector in Cape Town. Present day cosmic ray detectors typically carry a very large area and are composed of hundreds to thousands of individual detectors connected via GPS. The student will develop a proposal and perhaps prototype of a cosmic ray detector. This project will require hardware and electronics development skills (which can be acquired on the job). 25 2 Description of Modules (iii) Cloud Chamber. The goal is to produce a third year practical using a cloud chamber. While there are many ways this can be done, the initial idea is to measure the momentum of particles coming from a radioactive decay using photographic images of cloud chamber tracks in a magnetic field. Previous students have created a working cloud chamber, the complete project will require development of magnetic field and data acquisition system. This project will require hardware development and creativity. Dr W.A. Horowitz, [email protected] High energy theoretical physics (i) Phenomenological AdS/CFT. Apply the methods of the anti-de-Sitter/conformal field theory correspondence to compute observables in high energy nuclear collisions at RHIC and LHC. Use string theoretic techniques in 5 dimensions to gain insight into the physics of strongly-coupled field theories in 4 dimensions. There are many excited ways in which this project may go. One may numerically compute predictions of observables at RHIC and LHC with stochastic differential equation solving in a Langevin approach; one may also numerically propagate initial conditions through a coupled set of PDEs to the boundary of the 5D anti-de-Sitter space to compute the energy momentum tensor related to high momentum probes of strongly-coupled plasmas. Or one could derive analytically the energy and momentum lost by high velocity probe particles corresponding to strings with finite endpoint momenta. (ii) Ultrarelativistic Nuclear Tomography. Demonstrate the efficacy of the next generation particle collider in directly measuring the distribution of matter in ultrarelativistic nuclei using exclusive vector meson production. Determine whether experiment can distinguish between various theoretical models for the nontrivial, emergent phenomena in very dense, very energetic nuclei. Improve calculations with a derivation of the next-to-leading order corrections to the scattering formulae. (iii) Energy Loss in Perturbative Quantum Field Theories. Derive formulae for the energy lost by high momentum particles propagating through weakly-coupled plasmas in thermal field theory. Extend past calculations to include next-to-leading order corrections due to the emission of 26 2.3 Research Projects very high energy particles, particles at large angles, and in coupling. Find the changes to the energy loss formulae due to a flowing medium. Adapt the techniques of maximal helicity violating diagrams to multi-gluon emission in radiative energy loss process in high-energy nuclear collisions. Prof A. Peshier, [email protected] High energy theoretical physics (i) Equilibrating the quark-gluon plasma. A key question arising from experiments at at CERN’s Large Hadron Collider is: How can the quark-gluon plasma (QGP), which is produced in heavy-ion collisions in an off-equilibrium initial state, approach local equilibrium in a short time of the order of 10−23 s. We will seek to gain insight into this challenging topic at the interface of Quantum field theory and Statistical physics by exploring the QCD Boltzmann equation, a non-linear integro-differential equation. In particular, we will calculate the shear viscosity of the QGP, which describes how fast laminar flow patterns relax to equilibrium, in order to understand why the QGP is called the most perfect fluid. (ii) Beat the traffic. This is an interdisciplinary project, co-supervised with Prof A. Buffler, Physics, Prof K. Naidoo, Scientific Computing Research Unit, and Prof I. Barashenkov, Applied Mathematics (we are all not amused about the daily traffic jams). We will identify a relevant region in Cape Town to first analyze and then model various traffic phenomena by methods of statistical physics. The ultimate goal is to come up with specific proposals, to be made to the City of Cape Town, to ease (hopefully by simple and affordable means) the congested traffic situation. Dr S. Peterson, [email protected], and A/Prof M. Blumenthal, [email protected] Nuclear physics and cryogenics Build Nuclear Orientation Thermometry system for new ultra-cold dilution refrigerator at UCT. Background: Nuclear Orientation (NO) Thermometry is a technique that uses the polarization of Co-60 atoms at ultra-cold temperatures (< 50mK) to determine the temperature of the system. As the temperature inside the fridge (and the source) drops below 100mK, the spin of the Co-60 atoms lose 27 2 Description of Modules their mis-alignment (due to thermal fluctuations) and emits the two characteristic gamma-rays (1.17 and 1.33MeV) along the axis of the crystal (instead of isotropically). By comparing the spectra along the crystal axis and perpendicular to the crystal axis, it is possible to accurately determine the temperature down to 5mK. Objective: This goal of the project is to build a NO Thermometry system using a standard Co-60 calibration source and two NaI scintillation detectors that can be used to determine the temperature of the fridge. Dr D. Taylor, [email protected] Physics education Physics Education Research investigates the teaching and learning of physics. Students make sense of what happens in a physics course based on their individual make-up and past histories, and as a result their learning outcomes are often different from those intended by their lecturers. Thus within a class there may be considerable variation in how students understand a particular concept. Phenomenography is a research approach sometimes used in Physics Education Research which explores the variation in the conceptions which a group of people have of a particular phenomenon. Examples of phenomenographic studies can be found online, for example: [1] Ebenezer, J. V., & Fraser, D. M. (2001). First year chemical engineering students’ conceptions of energy in solution processes: Phenomenographic categories for common knowledge construction. Science Education, 85(5), 509-535. doi: 10.1002/sce. 1021 [2] Ingerman, A. (2003). Expounding on physics: a phenomenographic study of physicists talking of their physics. International Journal of Science Education, 25(12), 1489-1508. [3] Marshall, D., & Linder, C. (2005). Students expectations of teaching in undergraduate physics. Int. J. Science Educ., 27(10), 1255-1268. (i) Demonstrators conceptions of a lab report. The laboratory report is the primary piece of writing expected by physics undergraduate students. In the physics department, these are marked by demonstrators who are post-graduate students with a variety of different backgrounds. 28 2.3 Research Projects The research question for this project is: What conceptions do physics demonstrators have of a laboratory report? The data for this investigation will be lab reports which demonstrators will have produced, on the same first year experiment. The results of this research project will inform future training of laboratory demonstrators. (ii) Variation in student understanding of a physics concept. For this study, the student will choose a suitable physics concept / phenomenon, for example fields (electric, gravitational etc) or time dilation – the actual concept to be studied will be chosen in consultation with the honours student, and should align with the students own interests. The student will perform a phenomenographic analysis of an undergraduate UCT physics classs conceptions of this phenomenon. The class should have studied the concept already. The research instrument will be open-ended written responses or interviews. A/Prof H. Weigert, [email protected] High energy theoretical physics (i) Why pions are (almost) massless (and protons are heavy). The mass of observable (non-dark) matter is almost entirely due to a phenomenon called (spontaneous) chiral symmetry breaking. This is the phenomenon that predicts (almost massless) pions and heavy baryons such as protons. Descriptions of this range from the MIT bag model through effective field theories to QCD. The project is meant to explore part of this, depending on interest of the student. (ii) Instantons in QCD: From topology to nontrivial ground states in field QCD. This aims at a qualitative understanding of the vacuum ground state of QCD, the theory of strong interactions. The vacuum of field theories is generically not an “empty thing devoid of content”. A familiar example might be the all permeating Higgs field that gives masses to W and Z bosons (and tiny current masses to fermions). The vacuum of QCD is even more complicated and built around nontrivial gauge configurations with definite topological winding numbers that are essential in qualitatively qualitative features of QCD bound states. The project’s goal is to explore this set of ideas and present it at an elementary level. (iii) Berry phases: topology of space induces new phenomena and makes gauge potentials observable. 29 2 Description of Modules In “conventional” settings, only E and B fields are observable quantities, the gauge potential (which can be changed at will by adding total 4-divergences) remains unobservable. This changes drastically if defects in space (lines excluded from accessible space) are introduced. The defects impose constraints on the allowable gauge transformations of the gauge potential and make gauge phases observable in certain experiments. 30 3 Lecture time table The time tables below are drafts and might be changed to avoid clashes with modules from other departments. For updates as well as a detailed course calendar, please check the course web site www.phy.uct.ac.za/courses/phy4000w. All Physics courses will be given in the RW James Building. First semester The CM and SP tutorial sessions are biweekly, on alternating Wednesdays. Second semester The SS/NP and CP/NP tutorial sessions are biweekly, on alternating Wednesdays and Fridays, respectively. The RQ module runs in the first half of the semester (3rd quarter) with 4 lectures per week and one tutorial, the QF module follows in the second half of the semester (4th quarter). 31