* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download File
Biosphere 2 wikipedia , lookup
Photosynthesis wikipedia , lookup
Biological Dynamics of Forest Fragments Project wikipedia , lookup
Theoretical ecology wikipedia , lookup
River ecosystem wikipedia , lookup
Microbial metabolism wikipedia , lookup
Conservation agriculture wikipedia , lookup
Sustainable agriculture wikipedia , lookup
Human impact on the nitrogen cycle wikipedia , lookup
Chapter 3 Ecosystems: What Are They and How Do They Work? Chapter Overview Questions What is ecology? What basic processes keep us and other organisms alive? What are the major components of an ecosystem? What happens to energy in an ecosystem? What are soils and how are they formed? What happens to matter in an ecosystem? How do scientists study ecosystems? Updates Online The latest references for topics covered in this section can be found at the book companion website. Log in to the book’s e-resources page at www.thomsonedu.com to access InfoTrac articles. InfoTrac: Rescuers race to save Central American frogs. Blade (Toledo, OH), August 6, 2006. InfoTrac: Climate change puts national parks at risk. Philadelphia Inquirer, July 13, 2006. InfoTrac: Deep-Spied Fish: Atlantic Expeditions Uncover Secret Sex Life of Deep-Sea Nomads. Ascribe Higher Education News Service, Feb 21, 2006. Environmental Tipping Points NatureServe: Ecosystem Mapping U.S. Bureau of Land Management: Soil Biological Communities Core Case Study: Have You Thanked the Insects Today? Many plant species depend on insects for pollination. Insect can control other pest insects by eating them Figure 3-1 Core Case Study: Have You Thanked the Insects Today? …if all insects disappeared, humanity probably could not last more than a few months [E.O. Wilson, Biodiversity expert]. Insect’s role in nature is part of the larger biological community in which they live. THE NATURE OF ECOLOGY Ecology is a study of connections in nature. How organisms interact with one another and with their nonliving environment. Figure 3-2 Universe Galaxies Solar systems Biosphere Planets Earth Biosphere Ecosystems Ecosystems Communities Populations Realm of ecology Organisms Organ systems Communities Organs Tissues Cells Populations Protoplasm Molecules Atoms Organisms Subatomic Particles Fig. 3-2, p. 51 Animation: Levels of Organization PLAY ANIMATION Organisms and Species Organisms, the different forms of life on earth, can be classified into different species based on certain characteristics. Figure 3-3 Other animals 281,000 Known species 1,412,000 Insects 751,000 Fungi 69,000 Prokaryotes 4,800 Plants 248,400 Protists 57,700 Fig. 3-3, p. 52 Case Study: Which Species Run the World? Multitudes of tiny microbes such as bacteria, protozoa, fungi, and yeast help keep us alive. Harmful microbes are the minority. Soil bacteria convert nitrogen gas to a usable form for plants. They help produce foods (bread, cheese, yogurt, beer, wine). 90% of all living mass. Helps purify water, provide oxygen, breakdown waste. Lives beneficially in your body (intestines, nose). Populations, Communities, and Ecosystems Members of a species interact in groups called populations. Populations of different species living and interacting in an area form a community. A community interacting with its physical environment of matter and energy is an ecosystem. Populations A population is a group of interacting individuals of the same species occupying a specific area. The space an individual or population normally occupies is its habitat. Figure 3-4 Populations Genetic diversity In most natural populations individuals vary slightly in their genetic makeup. Figure 3-5 THE EARTH’S LIFE SUPPORT SYSTEMS The biosphere consists of several physical layers that contain: Air Water Soil Minerals Life Figure 3-6 Oceanic Crust Atmosphere Vegetation Biosphere and animals Soil Crust Rock Continental Crust Lithosphere Upper mantle Asthenosphere Lower mantle Core Mantle Crust (soil and rock) Biosphere Hydrosphere (living and dead (water) organisms) Lithosphere Atmosphere (crust, top of upper mantle) (air) Fig. 3-6, p. 54 Biosphere Atmosphere Membrane of air around the planet. Stratosphere Lower portion contains ozone to filter out most of the sun’s harmful UV radiation. Hydrosphere All the earth’s water: liquid, ice, water vapor Lithosphere The earth’s crust and upper mantle. What Sustains Life on Earth? Solar energy, the cycling of matter, and gravity sustain the earth’s life. Figure 3-7 Biosphere Carbon cycle Phosphorus cycle Nitrogen cycle Water cycle Oxygen cycle Heat in the environment Heat Heat Heat Fig. 3-7, p. 55 What Happens to Solar Energy Reaching the Earth? Solar energy flowing through the biosphere warms the atmosphere, evaporates and recycles water, generates winds and supports plant growth. Figure 3-8 Solar radiation Energy in = Energy out Reflected by atmosphere (34% ) UV radiation Absorbed by ozone Visible Light Absorbed by the earth Radiated by atmosphere as heat (66%) Lower Stratosphere (ozone layer) Troposphere Greenhouse effect Heat Heat radiated by the earth Fig. 3-8, p. 55 Animation: Sun to Earth PLAY ANIMATION ECOSYSTEM COMPONENTS Life exists on land systems called biomes and in freshwater and ocean aquatic life zones. Figure 3-9 Average annual precipitation 100–125 cm (40–50 in.) 75–100 cm (30–40 in.) 50–75 cm (20–30 in.) 25–50 cm (10–20 in.) below 25 cm (0–10 in.) 4,600 m (15,000 ft.) 3,000 m (10,000 ft.) 1,500 m (5,000 ft.) Coastal mountain ranges Sierra Nevada Mountains Great American Desert Coastal chaparral Coniferous and scrub forest Rocky Mountains Desert Great Plains Coniferous forest Mississippi River Valley Prairie grassland Appalachian Mountains Deciduous forest Fig. 3-9, p. 56 Nonliving and Living Components of Ecosystems Ecosystems consist of nonliving (abiotic) and living (biotic) components. Figure 3-10 Oxygen (O2) Sun Producer Carbon dioxide (CO2) Secondary consumer Primary (fox) consumer (rabbit) Precipitation Falling leaves and twigs Producers Soil decomposers Water Fig. 3-10, p. 57 Animation: Roles of Organisms in an Ecosystem PLAY ANIMATION Animation: Diet of a Red Fox PLAY ANIMATION Factors That Limit Population Growth Availability of matter and energy resources can limit the number of organisms in a population. Figure 3-11 Abundance of organisms Upper limit of tolerance Few No organisms organisms Population size Lower limit of tolerance No Few organisms organisms Zone of intolerance Low Zone of physiological stress Optimum range Temperature Zone of physiological stress Zone of intolerance High Fig. 3-11, p. 58 Factors That Limit Population Growth The physical conditions of the environment can limit the distribution of a species. Figure 3-12 Sugar Maple Fig. 3-12, p. 58 Producers: Basic Source of All Food Most producers capture sunlight to produce carbohydrates by photosynthesis: Producers: Basic Source of All Food Chemosynthesis: Some organisms such as deep ocean bacteria draw energy from hydrothermal vents and produce carbohydrates from hydrogen sulfide (H2S) gas . Photosynthesis: A Closer Look Chlorophyll molecules in the chloroplasts of plant cells absorb solar energy. This initiates a complex series of chemical reactions in which carbon dioxide and water are converted to sugars and oxygen. Figure 3-A Sun Chlorophyll H2O Light-dependent Reaction Chloroplast in leaf cell O2 Energy storage and release (ATP/ADP) CO2 6CO2 + 6 H2O Lightindependent reaction Sunlight Glucose C6H12O6 + 6 Fig. 3-A, p. 59 Animation: Linked Processes PLAY ANIMATION Consumers: Eating and Recycling to Survive Consumers (heterotrophs) get their food by eating or breaking down all or parts of other organisms or their remains. Herbivores • Primary consumers that eat producers Carnivores • Primary consumers eat primary consumers • Third and higher level consumers: carnivores that eat carnivores. Omnivores • Feed on both plant and animals. Decomposers and Detrivores Decomposers: Recycle nutrients in ecosystems. Detrivores: Insects or other scavengers that feed on wastes or dead bodies. Figure 3-13 Scavengers Longhorned beetle holes Decomposers Termite and Bark beetle Carpenter carpenter ant engraving galleries ant work Dry rot fungus Time progression Wood reduced to Mushroom powder Powder broken down by decomposers into plant nutrients in soil Fig. 3-13, p. 61 Aerobic and Anaerobic Respiration: Getting Energy for Survival Organisms break down carbohydrates and other organic compounds in their cells to obtain the energy they need. This is usually done through aerobic respiration. The opposite of photosynthesis Aerobic and Anaerobic Respiration: Getting Energy for Survival Anaerobic respiration or fermentation: Some decomposers get energy by breaking down glucose (or other organic compounds) in the absence of oxygen. The end products vary based on the chemical reaction: • • • • Methane gas Ethyl alcohol Acetic acid Hydrogen sulfide Two Secrets of Survival: Energy Flow and Matter Recycle An ecosystem survives by a combination of energy flow and matter recycling. Figure 3-14 Heat Abiotic chemicals (carbon dioxide, oxygen, nitrogen, minerals) Heat Solar energy Heat Producers (plants) Decomposers (bacteria, fungi) Heat Consumers (herbivores, carnivores) Heat Fig. 3-14, p. 61 Animation: Matter Recycling and Energy Flow PLAY ANIMATION BIODIVERSITY Figure 3-15 Biodiversity Loss and Species Extinction: Remember HIPPO H for habitat destruction and degradation I for invasive species P for pollution P for human population growth O for overexploitation Why Should We Care About Biodiversity? Biodiversity provides us with: Natural Resources (food water, wood, energy, and medicines) Natural Services (air and water purification, soil fertility, waste disposal, pest control) Aesthetic pleasure Solutions Goals, strategies and tactics for protecting biodiversity. Figure 3-16 The Ecosystem Approach The Species Approach Goal Goal Protect populations of species in their natural habitats Protect species from premature extinction Strategy Preserve sufficient areas of habitats in different biomes and aquatic systems Strategies Tactics •Protect habitat areas through private purchase or government action •Eliminate or reduce populations of nonnative species from protected areas •Manage protected areas to sustain native species •Restore degraded ecosystems •Identify endangered species •Protect their critical habitats Tactics •Legally protect endangered species •Manage habitat •Propagate endangered species in captivity •Reintroduce species into suitable habitats Fig. 3-16, p. 63 ENERGY FLOW IN ECOSYSTEMS Food chains and webs show how eaters, the eaten, and the decomposed are connected to one another in an ecosystem. Figure 3-17 First Trophic Level Second Trophic Level Third Trophic Level Producers (plants) Primary consumers (herbivores) Secondary consumers (carnivores) Heat Heat Fourth Trophic Level Tertiary consumers (top carnivores) Heat Solar energy Heat Heat Heat Heat Heat Detritivores (decomposers and detritus feeders) Fig. 3-17, p. 64 Animation: Energy Flow PLAY ANIMATION Animation: Prairie Trophic Levels PLAY ANIMATION Food Webs Trophic levels are interconnected within a more complicated food web. Figure 3-18 Humans Blue whale Sperm whale Crabeater seal Elephant seal Killer whale Leopard seal Adelie penguins Emperor penguin Petrel Fish Squid Carnivorous plankton Krill Herbivorous plankton Phytoplankton Fig. 3-18, p. 65 Animation: Categories of Food Webs PLAY ANIMATION Animation: Rainforest Food Web PLAY ANIMATION Animation: Prairie Food Web PLAY ANIMATION Energy Flow in an Ecosystem: Losing Energy in Food Chains and Webs accordance with the 2nd law of thermodynamics, there is a decrease in the amount of energy available to each succeeding organism in a food chain or web. In Energy Flow in an Ecosystem: Losing Energy in Food Chains and Webs Ecological efficiency: percentage of useable energy transferred as biomass from one trophic level to the next. Figure 3-19 Heat Tertiary consumers (human) Heat Decomposers Heat 10 Secondary consumers (perch) Heat 100 1,000 Primary consumers (zooplankton) Heat 10,000 Producers Usable energy (phytoplankton) Available at Each tropic level (in kilocalories) Fig. 3-19, p. 66 Animation: Energy Flow in Silver Springs PLAY ANIMATION Productivity of Producers: The Rate Is Crucial Gross primary production (GPP) Rate at which an ecosystem’s producers convert solar energy into chemical energy as biomass. Figure 3-20 Gross primary productivity (grams of carbon per square meter) Fig. 3-20, p. 66 Net Primary Production (NPP) NPP = GPP – R Rate at which producers use photosynthesis to store energy minus the rate at which they use some of this energy through respiration (R). Figure 3-21 Sun Respiration Gross primary production Growth and reproduction Energy lost and unavailable to consumers Net primary production (energy available to consumers) Fig. 3-21, p. 66 What are nature’s three most productive and three least productive systems? Figure 3-22 Terrestrial Ecosystems Swamps and marshes Tropical rain forest Temperate forest North. coniferous forest Savanna Agricultural land Woodland and shrubland Temperate grassland Tundra (arctic and alpine) Desert scrub Extreme desert Aquatic Ecosystems Estuaries Lakes and streams Continental shelf Open ocean Average net primary productivity (kcal/m2 /yr) Fig. 3-22, p. 67 SOIL: A RENEWABLE RESOURCE Soil is a slowly renewed resource that provides most of the nutrients needed for plant growth and also helps purify water. Soil formation begins when bedrock is broken down by physical, chemical and biological processes called weathering. Mature soils, or soils that have developed over a long time are arranged in a series of horizontal layers called soil horizons. SOIL: A RENEWABLE RESOURCE Figure 3-23 Oak tree Wood sorrel Lords and ladies Fern O horizon Leaf litter Dog violet Grasses and small shrubs Earthworm Millipede Honey fungus Mole Organic debris builds up Rock fragments Moss and lichen A horizon Topsoil B horizon Subsoil Bedrock Immature soil Regolith Young soil Pseudoscorpion C horizon Mite Parent material Nematode Root system Mature soil Red Earth Mite Springtail Actinomycetes Fungus Bacteria Fig. 3-23, p. 68 Animation: Soil Profile PLAY ANIMATION Layers in Mature Soils Infiltration: the downward movement of water through soil. Leaching: dissolving of minerals and organic matter in upper layers carrying them to lower layers. The soil type determines the degree of infiltration and leaching. Soil Profiles of the Principal Terrestrial Soil Types Figure 3-24 Mosaic of closely packed pebbles, boulders Weak humusmineral mixture Desert Soil (hot, dry climate) Dry, brown to reddish-brown with variable accumulations of clay, calcium and carbonate, and soluble salts Alkaline, dark, and rich in humus Clay, calcium compounds Grassland Soil semiarid climate) Fig. 3-24a, p. 69 Acidic light-colored humus Iron and aluminum compounds mixed with clay Tropical Rain Forest Soil (humid, tropical climate) Fig. 3-24b, p. 69 Forest litter leaf mold Humus-mineral mixture Light, grayishbrown, silt loam Dark brown firm clay Deciduous Forest Soil (humid, mild climate) Fig. 3-24b, p. 69 Acid litter and humus Light-colored and acidic Humus and iron and aluminum compounds Coniferous Forest Soil (humid, cold climate) Fig. 3-24b, p. 69 Some Soil Properties Soils vary in the size of the particles they contain, the amount of space between these particles, and how rapidly water flows through them. Figure 3-25 Sand 0.05–2 mm diameter Silt 0.002–0.05 mm diameter Water High permeability Clay less than 0.002 mm Diameter Water Low permeability Fig. 3-25, p. 70 MATTER CYCLING IN ECOSYSTEMS Nutrient Cycles: Global Recycling Global Cycles recycle nutrients through the earth’s air, land, water, and living organisms. Nutrients are the elements and compounds that organisms need to live, grow, and reproduce. Biogeochemical cycles move these substances through air, water, soil, rock and living organisms. The Water Cycle Figure 3-26 Condensation Rain clouds Transpiration Evaporation Transpiration Precipitation to land from plants Precipitation Runoff Surface runoff (rapid) Precipitation Evaporation from land Evaporation from ocean Precipitation to ocean Surface runoff (rapid) Infiltration and Percolation Groundwater movement (slow) Ocean storage Fig. 3-26, p. 72 Animation: Hydrologic Cycle PLAY ANIMATION Water’ Unique Properties There are strong forces of attraction between molecules of water. Water exists as a liquid over a wide temperature range. Liquid water changes temperature slowly. It takes a large amount of energy for water to evaporate. Liquid water can dissolve a variety of compounds. Water expands when it freezes. Effects of Human Activities on Water Cycle We alter the water cycle by: Withdrawing large amounts of freshwater. Clearing vegetation and eroding soils. Polluting surface and underground water. Contributing to climate change. The Carbon Cycle: Part of Nature’s Thermostat Figure 3-27 Fig. 3-27, pp. 72-73 Animation: Carbon Cycle PLAY ANIMATION Effects of Human Activities on Carbon Cycle We alter the carbon cycle by adding excess CO2 to the atmosphere through: Burning fossil fuels. Clearing vegetation faster than it is replaced. Figure 3-28 CO2 emissions from fossil fuels (billion metric tons of carbon equivalent) High projection Low projection Year Fig. 3-28, p. 74 The Nitrogen Cycle: Bacteria in Action Figure 3-29 Gaseous nitrogen (N2) in atmosphere Food webs on land Nitrogen fixation Fertilizers Uptake by autotrophs Excretion, death, decomposition Ammonia, ammonium in soil Nitrogen-rich wastes, remains in soil Ammonification Loss by leaching Nitrification Uptake by Loss by autotrophs denitrification Nitrate in soil Nitrification Nitrite in soil Loss by leaching Fig. 3-29, p. 75 Animation: Nitrogen Cycle PLAY ANIMATION Effects of Human Activities on the Nitrogen Cycle We alter the nitrogen cycle by: Adding gases that contribute to acid rain. Adding nitrous oxide to the atmosphere through farming practices which can warm the atmosphere and deplete ozone. Contaminating ground water from nitrate ions in inorganic fertilizers. Releasing nitrogen into the troposphere through deforestation. Effects of Human Activities on the Nitrogen Cycle Human activities such as production of fertilizers now fix more nitrogen than all natural sources combined. Figure 3-30 Global nitrogen (N) fixation (trillion grams) Nitrogen fixation by natural processes Year Fig. 3-30, p. 76 The Phosphorous Cycle Figure 3-31 mining excretion Fertilizer Guano agriculture uptake by uptake by weathering autotrophs autotrophs leaching, runoff Dissolved Land Marine Dissolved in Soil Water, Food Food in Ocean Lakes, Rivers Webs Webs Water death, death, decomposition decomposition weathering sedimentation settling out uplifting over geologic time Rocks Marine Sediments Fig. 3-31, p. 77 Animation: Phosphorous Cycle PLAY ANIMATION Effects of Human Activities on the Phosphorous Cycle We remove large amounts of phosphate from the earth to make fertilizer. We reduce phosphorous in tropical soils by clearing forests. We add excess phosphates to aquatic systems from runoff of animal wastes and fertilizers. The Sulfur Cycle Figure 3-32 Sulfur trioxide Water Acidic fog and precipitation Sulfuric acid Ammonia Oxygen Sulfur dioxide Ammonium sulfate Hydrogen sulfide Plants Dimethyl sulfide Volcano Industries Animals Ocean Sulfate salts Metallic sulfide deposits Decaying matter Sulfur Hydrogen sulfide Fig. 3-32, p. 78 Animation: Sulfur Cycle PLAY ANIMATION Effects of Human Activities on the Sulfur Cycle We add sulfur dioxide to the atmosphere by: Burning coal and oil Refining sulfur containing petroleum. Convert sulfur-containing metallic ores into free metals such as copper, lead, and zinc releasing sulfur dioxide into the environment. The Gaia Hypothesis: Is the Earth Alive? Some have proposed that the earth’s various forms of life control or at least influence its chemical cycles and other earth-sustaining processes. The strong Gaia hypothesis: life controls the earth’s life-sustaining processes. The weak Gaia hypothesis: life influences the earth’s life-sustaining processes. HOW DO ECOLOGISTS LEARN ABOUT ECOSYSTEMS? Ecologist go into ecosystems to observe, but also use remote sensors on aircraft and satellites to collect data and analyze geographic data in large databases. Geographic Information Systems Remote Sensing Ecologists also use controlled indoor and outdoor chambers to study ecosystems Geographic Information Systems (GIS) A GIS organizes, stores, and analyzes complex data collected over broad geographic areas. Allows the simultaneous overlay of many layers of data. Figure 3-33 Critical nesting site locations USDA Forest Service USDA Private Forest Service owner 1 Private owner 2 Topography Forest Habitat type Wetland Lake Grassland Real world Fig. 3-33, p. 79 Systems Analysis Ecologists develop mathematical and other models to simulate the behavior of ecosystems. Figure 3-34 Systems Measurement Define objectives Identify and inventory variables Obtain baseline data on variables Data Analysis Make statistical analysis of relationships among variables Determine significant interactions System Modeling Objectives Construct mathematical model describing interactions among variables System Simulation System Optimization Run the model on a computer, with values entered for different Variables Evaluate best ways to achieve objectives Fig. 3-34, p. 80 Importance of Baseline Ecological Data We need baseline data on the world’s ecosystems so we can see how they are changing and develop effective strategies for preventing or slowing their degradation. Scientists have less than half of the basic ecological data needed to evaluate the status of ecosystems in the United Sates (Heinz Foundation 2002; Millennium Assessment 2005).