Download AP Chemistry Syllabus 2013 Mawhiney

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Chemical potential wikipedia , lookup

Ion wikipedia , lookup

Electron configuration wikipedia , lookup

Supramolecular catalysis wikipedia , lookup

Cocrystal wikipedia , lookup

Host–guest chemistry wikipedia , lookup

Multi-state modeling of biomolecules wikipedia , lookup

Chemical bond wikipedia , lookup

Drug discovery wikipedia , lookup

California Green Chemistry Initiative wikipedia , lookup

Hydrogen-bond catalysis wikipedia , lookup

Organic chemistry wikipedia , lookup

Electrochemistry wikipedia , lookup

History of molecular theory wikipedia , lookup

Hypervalent molecule wikipedia , lookup

Nuclear chemistry wikipedia , lookup

Atomic theory wikipedia , lookup

Biochemistry wikipedia , lookup

Rate equation wikipedia , lookup

Process chemistry wikipedia , lookup

Stability constants of complexes wikipedia , lookup

Catalysis wikipedia , lookup

Analytical chemistry wikipedia , lookup

Photoredox catalysis wikipedia , lookup

Institute of Chemistry Ceylon wikipedia , lookup

Thermodynamics wikipedia , lookup

Ununennium wikipedia , lookup

Lewis acid catalysis wikipedia , lookup

Molecular dynamics wikipedia , lookup

Determination of equilibrium constants wikipedia , lookup

Redox wikipedia , lookup

Green chemistry wikipedia , lookup

Photosynthetic reaction centre wikipedia , lookup

Marcus theory wikipedia , lookup

George S. Hammond wikipedia , lookup

Chemical reaction wikipedia , lookup

Unbinilium wikipedia , lookup

Inorganic chemistry wikipedia , lookup

Stoichiometry wikipedia , lookup

History of chemistry wikipedia , lookup

Click chemistry wikipedia , lookup

Computational chemistry wikipedia , lookup

Chemical equilibrium wikipedia , lookup

Bioorthogonal chemistry wikipedia , lookup

Physical organic chemistry wikipedia , lookup

Chemical thermodynamics wikipedia , lookup

Transition state theory wikipedia , lookup

Transcript
AP Chemistry Syllabus 2013
Mawhiney
Dear AP Chemistry Student and Parent,
Welcome to AP Chemistry!! I am so excited about beginning this journey with you! For those of you that do
not know me, my name is Kimberly Mawhiney. This is my 9th year teaching Chemistry and my 3rd year
teaching AP Chemistry.
Overview of Course Expectations:
AP Chemistry is a college level course. Students may earn up to 8 hours college credit for successful
completion of this course and a good score on the AP Exam. It is a time-consuming and challenging, yet
extremely rewarding, course. This course moves at a very fast pace and classroom attendance is a MUST. I
will do my very best to provide a college level course/experience which not only prepares you for the AP
exam, but provides a solid foundation in chemistry. I also intend for it to be fun!!
The 2014 AP Chemistry Exam will be Monday, May 5 (tentative date)! To be successful on the AP
exam, students will need to spend on average five to ten additional hours per week outside of class working on
AP Chemistry. This statement is not meant to discourage, but to point out and state the truth to avoid any
misconceptions about the high expectations for this course.
Each student will need to have the following supplies:






# 2 pencils
Blue/Black Pens
Composition notebook for labs (We WILL write formal lab reports in this notebook)
Ear buds for Chrome books
3 Ring Binders with LOTS of Paper!
Scientific Calculator
It's important to recognize that chemistry is a problem-solving class. Major themes and
principles are stressed, and one major goal is that the student will be able to apply these
principles to understand and solve problems. You should understand that in a science course,
a significant portion of your time will be spent solving problems. THIS IS A
MATHEMATICS BASED COURSE, and mathematics will be used to solve problems.
AP Chemistry: Six Big Ideas
1) The Chemical Elements are fundamental building materials of matter, and all matter can be understood
in terms of arrangements of atoms. These atoms retain their identity in chemical reactions.
2) Chemical and physical properties of materials can be explained by the structure and the arrangement of
atoms, ions, or molecules and the forces between them.
3) Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of
electrons.
4) Rates of chemical reactions are determined by details of the molecular collisions.
5) The laws of thermodynamics describe the essential role of energy and explain and predict the direction
of changes in matter.
6) Any bond or intermolecular attraction that can be formed can be broken. These two processes are in
dynamic competition, sensitive to external conditions and external perturbations.
I look forward to getting to know each of you! We will have fun and we will work hard. I check my e-mail
frequently, so feel free to email me a question or concern anytime. I also maintain a classroom website that can
be accessed from the Currituck County High School home page. Please pay attention to this webpage as it will
have information that is pertinent to this class. Assignments, power points, notes, and a timeline of what we
will be doing and when is updated weekly on the AP page.
AP Chemistry Syllabus 2013
Mawhiney
My e-mail address is: [email protected]
Tentative Schedule: I say tentative, because there have been changes to the AP curriculum and I
may be changing the order or time needed for each Unit as I see fit.
1. Chemistry I Fundamentals (3.5 weeks)
Big Ideas: 1, 2, 3, 6
I. Laboratory Safety
II. Measurement topics
III. Symbols and formulas
IV. Basic Atomic theory & Periodic table
V. Ionic and covalent bonds
VI. Nomenclature
VII. Reactions
VIII. Stoichiometry
A. Percent composition
B. Empirical formulas
C. Solutions
D. Mole relationships
1. % yield
2. Limiting reagents
E. Titrations and other analyses
IX. Gases Laws
A. Ideal gases
B. Boyle’s law
C. Charles’ law
D. Dalton’s law of partial pressure
E. Graham’s law
F. Henry’s law
G. Van der Waal’s equation of state
X. Kinetic-Molecular theory
A. Avocado’s hypothesis and the mole concept
B. Kinetic energy of molecules
C. Deviations from ideality
The student will:
1. Define terms such as matter, energy, element, compound, mixture, solution.
2. Work comfortably with the metric system and work problems using dimensional analysis.
3. Understand and work with the proper number of significant figures.
AP Chemistry Syllabus 2013
Mawhiney
4. Apply knowledge of significant figures to laboratory work.
5. Correctly use an analytical balance, a vacuum flask, and Buchner funnel.
6. Know the name and application of the common laboratory equipment used in this course.
7. Identify the proper safety rules and procedures to be used in experimental situations.
8. Name the polyatomic ions, given the formula, and vice versa.
9. Name inorganic compounds, including acids, using the Stock system.
10. Write formulas for the names of inorganic compounds.
11. Work problems involving mole concepts, molarity, percent composition, empirical formulas, and
molecular formulas.
12. Balance equations given both reactants and products
13. Solve stoichiometric problems involving percent yield, and limiting reagents. Apply these concepts to
the laboratory setting.
14. State and discuss the major tenants of the kinetic-molecular theory.
15. Apply the kinetic-molecular theory to gases.
16. Discuss the methods and units for measuring pressure; convert between units.
17. Work problems using: Charles' law, Boyle's law, Gay-Lussac's Law, Avogadro's Law, Dalton's Law,
the Ideal Gas Law, and van der Waal's equation.
2. Types of Chemical Reactions and Solution Stoichiometry (3 weeks)
Big Ideas: 1, 3
I. Reaction types
A. Acid base reactions
1. Concepts of
a) Arrhenius
b) Lowry-Brønsted
B. Precipitation reactions
C. Oxidation reduction reactions
1. Oxidation number
2. Electron transport
D. 5 Basic Types of inorganic reactions
E. Environmental and societal issues involved with reactions
II. Solution Stoichiometry
III. Net ionic equations
IV. Balancing equations including redox
V. Mass-volume relationships with emphasis on the mole.
The student will:
1. Apply the periodic law to chemical reactivity in predicting reaction products.
2. Discuss the activity series of the elements.
4. Classify compounds as to acids, bases, acid anhydrides, basic anhydrides, salts, and covalent
molecules.
AP Chemistry Syllabus 2013
Mawhiney
5. Use the properties of metals and nonmetals to predict reaction products.
6. Write chemical equations for synthesis, decomposition, single replacement, metathetical,
redox, combustion, and acid-base reactions.
7. Use the Periodic Table to predict common oxidation states.
8. Use the Activity series of elements to predict single replacement reactions.
9. Know the major components of the atmosphere.
10. Describe physical and chemical properties of reactants and/or products in a reaction.
11. Identify and utilize experimental evidence to determine and describe products of reactions.
12. Understand which ions make water "hard" and know methods of softening water.
3. Chemical Thermodynamics (2.5 weeks)
Big Ideas: 5
I. State functions
A. Enthalpy
1. Thermal energy, heat, and temperature and work
2. Calorimetry
3. Enthalpy changes
4. Hess’s Law
5. Bond Energies
B. Entropy
II. Laws of thermodynamics
III. Gibb’s Free Energy
A. Relationship of enthalpy and entropy to spontaneity of reactions
A. Relationship of change of free energy to equilibrium constants (intro).
B. Relationship of change of free energy to electrode potentials (intro)
The student will:
1. List and define the meanings and common units for the common thermodynamic symbols.
Learn the meaning of the following thermodynamic terms: enthalpy, exothermic, endothermic,
system, surroundings, universe, and heat of formation, heat of reaction, calorimetry, heat, calorie,
joule, standard molar enthalpy of formation, molar heat of combustion, entropy, absolute
entropy, free energy.
2. Distinguish between a state function and a path function.
3. Define internal energy, PV work, enthalpy, entropy, and free energy.
4. Use Hess's law to solve problems of energy, entropy, and free energy.
5. Define the terms exothermic & endothermic.
6. Determine the spontaneity of a reaction.
7. Discuss the laws of thermodynamics (in order).
8. Solve calorimetry problems involving specific heat.
9. Use stoichiometric principles to solve heat problems.
10. Use enthalpy changes to calculate bond energies.
AP Chemistry Syllabus 2013
Mawhiney
4. Atomic Structure and Periodicity (3 weeks)
Big Ideas: 1, 2
I. Electronic Structure
A. Spectroscopic Evidence for the atomic theory
B. Atomic masses
C. Atomic number and mass number
D. Electron energy levels and orbitals
E. Periodic relationships
II. Nuclear structure
B. Half-lives
The student will:
1. Identify the major subatomic particles in an atom.
2. List the types of radioactive emissions.
3. Discuss the Bohr model of the atom, and compare it to the quantum mechanical model of the
atom.
4. Discuss the major differences in the classical mechanical model and the quantum mechanical
model.
5. Investigate the spectroscopic evidence for the modern atomic theory: mass spectroscopy,
PES, absorption/emission spectroscopy, IR
6. Work problems involving energies of electron transitions and apply to ionization energy and
PES.
7. Define and discuss the following terms or concepts: Heisenberg Uncertainty Principle, Pauli
Exclusion Principle, wave-particle duality of matter, Wave function of electrons (Y), radial
probability, density, orbitals, aufbau process, and Hund's rule.
8. Know the shapes of the s, p, and d orbitals.
9. Understand the basis for the periodic law, and apply it to periodic trends such as atomic radii,
ionization energy, electron affinity, melting point, oxidation states, and electronegativity.
10, Work problems involving half-life.
5. Bonding and Molecular Structure (2 weeks)
Big Ideas: 1, 2, 3, 6
I. Binding forces
A. ionic
B. covalent
C. metallic
D. interparticle
II. Relationships to states, structure, and properties of matter
III. Polarity of bonds, Electronegativities
AP Chemistry Syllabus 2013
Mawhiney
IV. Molecular models
A. Lewis structures
1. Resonance
B. Hybridization of orbitals
1. sigma and pi bonds
2. bond order
V. VSEPR
A. Geometry of molecules and ions
B. Examples of structural, geometric, isomerism in:
1. Organic molecules
VI. Polarity of molecules
The student will:
1. Draw Lewis structures for the common atoms, ions, and molecules.
2. Use periodic trends of electronegativity to predict bond type.
3. Distinguish between polar and nonpolar molecules.
4. Use electronegativity values and bonding concepts to determine oxidation states on atoms.
5. Draw resonance structures
6. Use the VSEPR model to predict molecular geometry.
7. Use the hybridization theory to predict molecular geometry.
6. The Kinetic-Molecular Theory and States of Matter (2 weeks)
Big Ideas: 1, 2, 5, 6
I. Interparticle Forces
A. Covalent network
B. Ion-Ion
C. Metallic
D. Van der Waals
II. Relation of molecular structure to physical properties.
III. Liquids and solids
A. Liquids and solids from the K-M viewpoint.
B. Changes of state.
The student will:
1. State and discuss the major tenants of the kinetic-molecular theory.
2. Apply the kinetic-molecular theory to liquids and solids.
3. Discuss intermolecular forces and relate them to physical properties such as boiling point and
vapor pressure.
AP Chemistry Syllabus 2013
Mawhiney
4. Interpret heating curves as to melting point, boiling point, and specific heat.
5. Discuss the phenomena of boiling, and be able to relate it to pressure.
6. Explain physical and chemical properties of substance using intra and intermolecular
bonding.
Approximate End of 1st Semester
7. Solutions (1.5 weeks)
Big Ideas: 2, 3
I. Types of solutions
II. Factors affecting solubility
III. Concentration Expressions
IV. Raoult’s Law
A. Vapor pressure
B. Non-ideal solutions
VI. Colloids
The student will:
1. Define solution vocabulary.
2. Discuss the effect that physical conditions have on solubility.
3. Use the concepts of intermolecular forces in discussing the dissolving process and heat of
solution.
4. Separate compounds into electrolytes and non-electrolytes; separate electrolytes into ionic
salts, acids, bases, acid anhydrides, and basic anhydrides.
5. Solve problems involving molarity, % composition, and mole fraction; to be able to convert
between concentration designations.
8. Chemical Kinetics (2.5 weeks)
Big Ideas: 1, 3, 4, 6
I. Rate of reaction
A. Differential Rate Law
B. Integrated Rate Law
II. Order of the reaction
III. Factors which change the rate of the reaction
A. Temperature
B. Concentration
C. Nature of substance
D. Catalysts
AP Chemistry Syllabus 2013
Mawhiney
IV. Relationship between the rate-determining step and the reaction mechanism
The student will:
1. List the factors that influence the rate of a chemical reaction.
2. Use experimental data to determine the rate law, determine the order of the reaction, and to
define proper units for the constant.
3. Compare and contrast zero, first, and second order reactions in terms of the plot needed to
give a straight line, the relationship of the rate constant to the slope of the straight line, and the
half-life of the reaction.
4. Use experimental data to postulate a reaction mechanism.
5. Interpret how changing the conditions of the reaction (i.e. temperature, pressure,
concentration, and addition of a catalyst) affects both the rate and the rate constant of the
reaction.
6. Discuss the role of a catalyst in the rate and mechanism of a reaction; distinguish between a
homogeneous and a heterogeneous catalyst.
7. Interpret data from a first order reaction to determine its half-life.
9. General Equilibrium (2 weeks)
Big Ideas: 3, 4, 6
I. Concept of dynamic equilibrium including Le Chatelier’s Principle
II. Equilibrium constants and the law of mass action
A. Kc calculations
B. Kp calculations for gases
C. Reaction Quotient, Q
III. Revisit Free Energy and K
The student will:
1. Describe the meaning of physical and chemical equilibrium, and give real life examples of
each.
2. Write the law of mass action for any system at equilibrium.
3. Understand the meaning of equilibrium constant and reaction quotient (Q).
4. Interpret the position of equilibrium from the size of the equilibrium constant.
5. Use Le Chatelier's Principle to predict the direction a system in equilibrium will shift in order
to re-establish equilibrium.
6. Know that temperature, pressure, and concentration will shift the position of equilibrium.
7. Understand that a catalyst will not have an effect of the equilibrium constant.
AP Chemistry Syllabus 2013
Mawhiney
10. Aqueous Equilibria (3.5 weeks)
Big Ideas: 3, 4, 6
I. Acid Base Theories
A. Arrhenius theory
B. Lowry-Brønsted theory
1. Amphiprotic species
2. Relative strengths of acids and bases
3. Polyprotic acids
II. Weak Acids and Bases Equilibria
A. pH
B. pOH
C. Buffer systems
D. Hydrolysis
E. Titration
III. Solubility Product Equilibria
A. Factors involving dissolution
B. Molar solubility
C. Precipitation
The student will:
1. Distinguish between the various modern theories of acids and bases.
2. Name and write formulas for normal salts, hydrogen salts, hydroxy salts, oxysalts and acids.
3. Perform a titration and solve for the appropriate concentration.
4. Use the concept of conjugate acid-base pairs to predict reaction products.
5. Define and give examples of amphiprotic species.
6. Identify weak electrolytes.
7. Write a law of mass action for any reaction in equilibrium.
8. Know and use the water constant, Kw.
9. Define pH, pOH, pK, Ka, Kb, ionization constant, percent ionization, Ksp.
10. Convert from [H3O+] or [OH-] to pH or pOH.
11. Use a pH meter to determine a titration curve and an ionization constant.
12. Pick a suitable indicator for a titration.
13. Recognize salts that undergo hydrolysis and write a reaction for the ion with water.
14. Given the concentration and amount of weak acids or bases and an appropriate titrant,
calculate data to produce a titration curve.
15. Write solubility product expressions for slightly soluble compounds.
16. Solve problems involving: (a) solubility product constants from solubility; (b) molar
solubility from Ksp; (c) concentrations of substances necessary to produce a precipitate; (d)
concentrations of ions involved in simultaneous equilibrium.
AP Chemistry Syllabus 2013
Mawhiney
11. Electrochemistry (2 weeks)
(Chapter 17)
Big Ideas: 1, 3, 5, 6
I. Redox equations
II. Galvanic cells and cell potentials
A. Standard Half-Cell Potentials
B. Concentration Cells
C. Free Energy and spontaneity
III. Electrolytic cells
A. Electrolysis (molten and aqueous salts)
B. Corrosion
C. Electroplating and stoichiometric calculations
The student will:
1. Use the half-reaction method to balance redox equations.
2. Define electrochemical terms: redox, anode, anion, cathode, cation, oxidizing agent, reducing
agent, emf, and electrode.
3. Distinguish between an electrolytic cell and a voltaic cell in terms of function, direction and
ΔG.
4. Solve problems using Faraday's law.
5. Predict reaction products for both electrolytic and voltaic cells.
6. Use a table of Standard Reduction Potentials to compute cell voltages.
7. Diagram voltaic cells using proper notation.
8. Establish the relationship between the free energy change, the cell potential, and the
equilibrium constant.
Laboratory Experimentation:
Labs form a foundation for student understanding of the chemical principles discussed in
lectures but are also chosen to reflect the diversity of lab work generally completed in a first year
course. Analysis of data from AP Chemistry examinees shows that increased laboratory time is
correlated with higher AP grades. Depending on the particular lab, students will work
individually or collaboratively to physically manipulate equipment and materials in order to
make relevant observations and collect data. The majority of lab work will be hands-on with
simulations used only when the techniques or chemicals cause a hazard. Technology is
integrated into a number of labs in the form of probe ware and data collection software.
Student labs are done by lab groups of two to three students. This allows for
collaboration and cooperative learning during labs.
The keeping of a lab notebook is required and is designed for the students to present to
appropriate staff when enrolled in the college or university of their choice. In this notebook
students will communicate lab purpose, safety, procedure, data and observations, calculations,
and conclusions. The emphasis in the conclusion will be in three areas. First, students will
summarize the lab and determine how and if their purpose was achieved. Second, students will
AP Chemistry Syllabus 2013
Mawhiney
discuss results in terms of their reasonability and how they compare to accepted values (where
applicable) and sources of error are identified and discussion of the impact of the error on the
final results. Lastly, students identify the major chemical principles used in the lab and the lab
results that support those principles.
Although the teacher uses many demonstrations throughout the year, they do not take
the place of laboratory work by the students nor are they treated as a lab in the course.
Useful Websites:
There is a multitude of awesome chemistry resources available via the Internet. With the
hundreds of tutorial websites out there, I feel confident that you will find adequate information
on any topic within this packet. In addition, below are some general chemistry websites for you
to check out. You may want to bookmark these and use them as a reference throughout the
year.
http://www.khanacademy.org/science/chemistry/#science/chemistry
http://www.brightstorm.com/science/chemistry/
http://www.chemmybear.com/stdycrds.html
http://www.chemteam.info/ChemTeamIndex.html
http://www.adriandingleschemistrypages.com/apquiz.html
http://www.webelements.com/