Download Electron Configuration Worksheet #1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Max Born wikipedia , lookup

Coherent states wikipedia , lookup

Probability amplitude wikipedia , lookup

Double-slit experiment wikipedia , lookup

Renormalization group wikipedia , lookup

Quantum field theory wikipedia , lookup

Ferromagnetism wikipedia , lookup

Quantum entanglement wikipedia , lookup

Many-worlds interpretation wikipedia , lookup

Bell's theorem wikipedia , lookup

Quantum fiction wikipedia , lookup

Atomic theory wikipedia , lookup

Quantum dot wikipedia , lookup

Spin (physics) wikipedia , lookup

Renormalization wikipedia , lookup

Particle in a box wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Quantum computing wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Orchestrated objective reduction wikipedia , lookup

Quantum teleportation wikipedia , lookup

Ionization wikipedia , lookup

Interpretations of quantum mechanics wikipedia , lookup

Electron wikipedia , lookup

Quantum machine learning wikipedia , lookup

Quantum key distribution wikipedia , lookup

Canonical quantization wikipedia , lookup

Quantum group wikipedia , lookup

T-symmetry wikipedia , lookup

History of quantum field theory wikipedia , lookup

Hidden variable theory wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

EPR paradox wikipedia , lookup

Bohr model wikipedia , lookup

Quantum state wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

Atomic orbital wikipedia , lookup

Hydrogen atom wikipedia , lookup

Electron configuration wikipedia , lookup

Transcript
CHEMISTRY 11 AP – ELECTRON CONFIGURATION WORKSHEET #1
1) Write the full electron configuration of the following:
a) Co
(1s2 2s2 2p6 3s2 3p6 4s2 3d7)
b) Sr
(1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2)
c) Ar
(1s2 2s2 2p6 3s2 3p6)
d) Cd
(1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10)
e) Xe
(1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6)
f)
(1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5)
Br
g) Cs
(1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1)
h) Pb
(1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p2)
i)
Ga
(1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p1)
j)
Zr
(1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d2)
2) Draw the orbital diagram of the following:
a) H
1s
2s
2p
3s
3p
4s
3d
2p
3s
3p
4s
3d
3s
3p
4s
3d
3p
4s
3d
é
b) O
1s
2s
éê
éê
éê
é
é
c) Na
1s
2s
éê
éê
2p
éê
éê
éê
é
d) Ti
1s
2s
éê
éê
2p
éê
éê
3s
éê
éê
éê
éê
éê
éê
é
é
e) K
1s
2s
éê
éê
2p
éê
éê
3s
éê
éê
3p
éê
éê
4s
éê
é
3d
f)
Al
1s
2s
éê
éê
2p
éê
éê
3s
éê
éê
3p
4s
3d
3p
4s
3d
4s
3d
é
g) P
1s
2s
éê
éê
2p
éê
éê
3s
éê
éê
é
é
é
h) Ca
1s
2s
éê
éê
i)
éê
éê
3s
éê
éê
3p
éê
éê
éê
éê
Cl
1s
2s
éê
éê
j)
2p
2p
éê
éê
3s
éê
éê
3p
éê
éê
4s
3d
4s
3d
é
Ni
1s
2s
éê
éê
2p
éê
éê
3s
éê
éê
3p
éê
éê
éê
éê
éê
éê
éê
é
é
Writing quantum numbers for a given electron is not required on the AP exam; however it is important
to know what an appropriately formulated set of quantum numbers looks like. Use the following
summary of quantum number rules to help you answer questions 3 and 4.
Principal Quantum Number (n) – may be an integer value starting from 1. This represents the
principal energy level of the atom in which the electron is located and is related to the average distance
of the electron from the nucleus
Angular Momentum Number (ℓ ) – may have any number from 0 up to n – 1. This designates the
subshell of the electron and also represents the shape of the orbitals in the subshell.
Magnetic Quantum Number (mℓ ) – may be any integer, including 0 from –ℓ to +ℓ . This designates the
orientation of an orbital in space.
Spin Quantum Number (ms) – may be either +½ or –½. This represents the “spin” of an electron. For
electrons to pair up within an orbital, one electron must have a +½ value and the other a –½ value.
Consider the orbital diagram of F:
1s
2s
éê
éê
2p
éê
éê
é
The last electron was the ê electron placed in the second p orbital therefore that electron has a n = 2
since it is in the second shell, a ℓ = 1 since it is a p subshell (all s = 0, p = 1, d = 2 and f = 3), a mℓ = 0
since it is in the second orbital of the 2p subshell (the first box is –1, the second box is 0 and the third
box is +1) and a ms = –½ since the electron is pointed down
3) Complete the following table for the four quantum numbers for the last electron added to each of the
first 20 elements:
Element
n
ℓ
mℓ
ms
H
1
0
0
+½
He
1
0
0
–½
Li
2
0
0
+½
Be
2
0
0
–½
B
2
1
–1
+½
C
2
1
0
+½
N
2
1
+1
+½
O
2
1
–1
–½
F
2
1
0
–½
Ne
2
1
+1
–½
Na
3
0
0
+½
Mg
3
0
0
–½
Al
3
1
–1
+½
Si
3
1
0
+½
P
3
1
+1
+½
S
3
1
–1
–½
Cl
3
1
0
–½
Ar
3
1
+1
–½
K
4
0
0
+½
Ca
4
0
0
–½
4) Designate each of the following sets of quantum numbers as possible or impossible according to the
rules of quantum numbers.
a) 1, 0, 0, +½
d) 1, 3, 0, +½
g) 3, 2, 0, +½
j) 2, 2, 2, –½
b) 2, 0, 1, –½
e) 3, 1, -1, +½
h) 4, 2, -2, –½
k) 4, 4, 0, +½
c) 3, 2, 1, 0
f) 1, 1, 1, +½
i) 3, 1, 2, –½
l) 5, 3, –2, +½
a, e, g, h, i and l are valid. The others disobey one or more of the rules of quantum numbers as
follows: d, e, f, g and k violate the angular momentum rule; b violates the magnetic quantum
number rule and c violates the spin quantum number rule.