Download Representation Theory: Applications in Quantum Mechanics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Coherent states wikipedia , lookup

Measurement in quantum mechanics wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

Quantum teleportation wikipedia , lookup

Quantum machine learning wikipedia , lookup

Perturbation theory wikipedia , lookup

Renormalization group wikipedia , lookup

Hydrogen atom wikipedia , lookup

Renormalization wikipedia , lookup

Quantum key distribution wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Quantum field theory wikipedia , lookup

Copenhagen interpretation wikipedia , lookup

Quantum chromodynamics wikipedia , lookup

Many-worlds interpretation wikipedia , lookup

Bell's theorem wikipedia , lookup

Quantum state wikipedia , lookup

Orchestrated objective reduction wikipedia , lookup

Max Born wikipedia , lookup

Path integral formulation wikipedia , lookup

Topological quantum field theory wikipedia , lookup

EPR paradox wikipedia , lookup

History of quantum field theory wikipedia , lookup

Interpretations of quantum mechanics wikipedia , lookup

Scalar field theory wikipedia , lookup

Quantum group wikipedia , lookup

Canonical quantization wikipedia , lookup

T-symmetry wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Hidden variable theory wikipedia , lookup

Transcript
Representation Theory:
Tackling Problems in Quantum Mechanics
KRISTINA CHANG
PROJECT ADVISOR: RAMIN NAIMI
SENIOR COMPREHENSIVE IN MATHEMATICS, SPRING 2016
Meet the wavefunction
wavefunction ๐œ“ ๐’“, ๐‘ก
1) Wavefunctions are solutions toโ€ฆ
t-dependent Schrodinger Eq:
๐‘ฏ ฿ฐ(r,t)=๐‘–โ„
๐œ•
๐œ“
๐œ•๐‘ก
where ๐‘ฏ is the Hamiltonian Operator:
๐ซ, t
H=T+V
2) Stationary states (special ๐โ€™s) are solutions toโ€ฆ
t-independent Schrodinger Eq:
where E is a constant
๐‘ฏ ๐œ‘ ๐‘Ÿ = ๐ธ๐œ‘ ๐‘Ÿ
Symmetry?
GOAL: Solve for ๐œ‘ in cases were H has intrinsic symmetry using Representation Theory.
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
2
Roadmap
Roadmap
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
3
Representing a mathematical entity A with a
mathematical entity B.
What is a
representation?
Group
A
(H)
Matrices
B
Why is this useful?
โ€ขTranslate problems in QM involving H (symmetrygroup) into a linear algebra
4
What is a representation?
Def. A representation of a group G is a group homomorphism ฯ†: G โ†’ GL(n,C).
Group homomorphism:
ฯ†(g1 g2) = ฯ†(g1) ฯ†(g2)
g1
g2
g3
ฯ†
๐’‚ ๐’ƒ
๐’„ ๐’…
๐’† ๐’‡
๐’ˆ ๐’‰
G
KRISTINA CHANG
โ€ฆ
๐’Š
๐’Œ
๐’‹
๐’
GL(2,C)
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
5
What groups can we represent?
Symmetry group:
The symmetry of an object can be classified by a set of โ€œactionsโ€ โ€“ symmetry operations โ€“ which
preserve its position, shape, and orientation.
y
2
CC44CC4
Composition of rotations forms a closed group.
4
1
2
x
4
KRISTINA CHANG
Notation:
โ—ฆ ๐‚๐ง
rotate by ๐…/n
โ—ฆ ( Cn )m = ๐‚๐ง๐ฆ rotate by (๐…/n), m times
3
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
6
What groups can we represent?
Considerโ€ฆ
< Cn > = {Cn0 , Cn1 , โ€ฆ , Cnnโˆ’1 }
y
โ€œPure Rotation Groupsโ€ ๏ƒ  Cyclic!!!
1
2
How can we represent < Cn > with matrices?
x
Rotations are linear transformations!
Rฮธ โ†’
๐‘๐‘œ๐‘  ๐œƒ
๐‘ ๐‘–๐‘› ๐œƒ
4
โˆ’ ๐‘ ๐‘–๐‘› ๐œƒ
๐‘๐‘œ๐‘  ๐œƒ
3
Intuitive representation: Let ฯ†: <C4> โ†’ GL(2,C) be given by
๐ถ4๐‘š โ†’
KRISTINA CHANG
๐‘๐‘œ๐‘  ๐œƒ๐‘š
๐‘ ๐‘–๐‘› ๐œƒ๐‘š
โˆ’ ๐‘ ๐‘–๐‘› ๐œƒ๐‘š
๐‘๐‘œ๐‘  ๐œƒ๐‘š
where ๐œƒ๐‘š = m ๐œ‹/4
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
7
At this point, we have
1) seen a formal definition of a representation
Irreducible
representations
2) explored one intuitive way to construct a
representation
We will soon introduce reducibility (a property of a
representation).
But firstโ€ฆ weโ€™ll need a few important concepts:
๏‚ง New notation
๏‚งWays to generate new repโ€™s from old ones
8
Sizes
and
Sums
A note about
notation:
Suppose G = { g1, g2, g3, โ€ฆ, gn }, and let ฯ† be a representation of G.
We will often refer to ฯ† by the image set of ฯ†:
{ ฮ“โˆ | โˆ =1, 2, โ€ฆ, n }
where ฮ“i = ฯ†(gi) for all i.
For convenience, we will abbreviate โ€œ { ฮ“โˆ } โ€
Remember:
{ ฮ“โˆ } =
๐’‚ ๐’ƒ
,
๐’„ ๐’…
KRISTINA CHANG
๐’† ๐’‡
,
๐’ˆ ๐’‰
โ€ฆ,
REPRESENTATION THEORY IN QUANTUM MECHANICS
๐’Š ๐’‹
๐’Œ ๐’
SPRING 2016
9
Let a representation ฯ† of G be given by ฯ†: G โ†’ GL(n,C).
Sizes
Sums
Def 1. The and
dimensionality
of the representation ฯ† is n.
Suppose
โˆ: G โ†’ GL(n,C) and
{ [โˆ (๐‘”1 )],
[โˆ (๐‘”2 )], โ€ฆ, [โˆ (๐‘” ๐บ )] }
Def.
ฮฒ: G โ†’ GL(m,C) are representations of G.
{ [ฮฒ(๐‘”1 )],
[ฮฒ(๐‘”2 )], โ€ฆ, [ฮฒ(๐‘” ๐บ )] }
The direct sum of โˆ and ฮฒ is the homomorphism โˆโŠ•ฮฒ: G โ†’ GL(n+m,C) given by (โˆโŠ•ฮฒ)(g) =
[โˆ (๐‘”)]
00
โˆ g ๐‘”โˆˆ๐บ G
[โˆ (๐‘”1 )] (โˆโŠ•ฮฒ)(g)
0
[โˆ
๐‘”2 ]
=
for
all
,
, โ€ฆ,
0
[ฮฒ(๐‘”)]
0
[ฮฒ(๐‘”1 )]
0
[ฮฒ(๐‘”2 )]
0
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
0
ฮฒ ๐‘”๐บ
SPRING 2016
10
Reducibility
Th. Suppose ฯ†: G โ†’ GL(n,C) is a representation of G.
If ฯ† = โˆโŠ•ฮฒ, for some functions โˆ and ฮฒ, then โˆ and ฮฒ are themselves
representations of G.
Def. us
If there
matrix P such that for all g in G,
Leads
to ideaisofsome
reducibility:
-1
ฯ†(g)sum
= P ofโˆ(g)โŠ•ฮฒ(g)
P
Rep ฯ† can be decomposed into a direct
lower-dimensional
repโ€™s โˆ and ฮฒ
for some nontrivial functions โˆ and ฮฒ, then ฯ† is a reducible representation of G.
Else, ฯ† is an irreducible representation of G.
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
11
Practice using def. of irreducibility:
Reducibility
All 1-dimensional representations of a group are irreducible.
Th.
โ€œProof.โ€
There are no representations with a dimension less than 1.
๏ƒ  1-dimensional representation can never be decomposed as a direct sum
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
12
Consequences of Irreducibility
Groups have a complete set of irreducible representations.
(basis for reducible representations)
Linear algebra applied to the def. of irreducibilityโ€ฆ
Great Orthogonality Theorem - stringent criteria on irreducible repโ€™s
๏ƒ  Allows us to derive a complete set of all irreducible representations for most common
symmetry groupsโ€ฆ
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
13
Irreducible representations for < ๐ถ๐‘ >
where ๐œ” = ๐‘’ 2๐œ‹๐‘–/๐‘
Complete Table of Irreducible Repโ€™s
Matrices in
the image
set of the
irr. rep.
KRISTINA CHANG
๐ธ
๐ถ๐‘
ฮ“1
ฮ“2
1
1
1
๐ถ๐‘ 2
1
๐œ”
๐œ”2
โ€ฆ
โ€ฆ
โ‹ฎ
ฮ“๐‘
โ‹ฎ
1
๐œ”๐‘โˆ’1
๐œ”๐‘โˆ’2
โ€ฆ
REPRESENTATION THEORY IN QUANTUM MECHANICS
โ€ฆ
๐ถ๐‘ ๐‘โˆ’1
1
Elements of group
๐œ”๐‘โˆ’1
2
(๐‘โˆ’1)
๐œ”
SPRING 2016
14
So farโ€ฆ
Quantum
Mechanics
โ€ข We showed how a symmetry group can be
represented using matrices
โ€ข Presented a complete set of irreducible
representations for cyclic groups
Whatโ€™s this got to do with Quantum Mechanics?
Recall:
We want to utilize symmetries in H to make solving for
๐œ‘ โ€ฒ ๐‘  easier. (Hint: H belongs to a symmetry group!)
15
Group of the Hamiltonian
The Symmetry of the Hamiltonian
Suppose R is an operation under which H is invariant:
R-1 H R = H
Eq. 6.2
If R satisfies Eq. 6.2, we say that R is a symmetry operation of the Hamiltonian H.
The Group of the Hamiltonian
Th.
The set of all symmetry operations {๐‘น๐œถ } of a Hamiltonian forms a group.
This means we can represent {๐‘น๐œถ } !
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
16
Time-independent SE:
H๐œ‘=E๐œ‘
The Schrödinger Equations
โ€ข Eigenvalue equation!
eigenvalue E, eigenfunction ๐‹ ๐’“
Properties: (parallels to Linear Algebra!)
1) Distinct Eโ€™s have orthogonal ๐‹โ€™s
2) E may have multiple orthogonal ๐‹โ€™s.
If E does not have multiple orthogonal ๐‹โ€™s, then E is non-degenerate.
If E has exactly n distinct eigenfunctions, E is n-degenerate.
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
17
We are now almost ready to prove โ€œThe Bridging
Theorem:โ€
โ€œThe Bridging
Theoremโ€
Representation
Theory
Quantum
Mechanics
But first, we need a few lemmasโ€ฆ
18
Lemmas
Lemma 1. Symmetry operations generate eigenfunctions.
Suppose H ๐œ‘ = E๐œ‘.
If ๐‘…๐‘Ž is a symmetry operation of H, then
H (๐‘…๐‘Ž ๐œ‘) = E (๐‘…๐‘Ž ๐œ‘)
Lemma 2. Symmetry operations phase shift ๐‹ for non-degenerate E.
Suppose E is non-degenerate, then
๐‘…๐‘Ž ๐œ‘ = ๐‘’ ๐‘–๐œƒ๐›ผ ๐œ‘
KRISTINA CHANG
for some complex number ๐‘’ ๐‘–๐œƒ๐›ผ .
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
19
The โ€œBridging Theoremโ€:
non-degenerate case
Hamiltonian eigenfunctions form a basis for irreducible representations.
๏‚ง Suppose {๐‘น๐œถ } is the group of the Hamiltonian H.
๏‚ง Suppose H๐‹= E๐‹, where E is non-degenerate. (We will consider the
degenerate case separately)
๏‚ง Consider the set of complex numbers
{ ๐‘’ ๐‘–๐œƒ๐›ผ | ๐‘…๐›ผ ๐œ‘ = ๐œ‘๐‘’ ๐‘–๐œƒ๐›ผ where ๐‘…๐›ผ is a symmetry op.}
Th 6.3a.
KRISTINA CHANG
{ ๐’†๐’Š๐œฝ๐œถ }
{ ๐’†๐’Š๐œฝ๐œถ } is an irreducible representation of ๐‘น๐œถ .
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
20
Hamiltonian eigenfunctions form a basis for irreducible representations.
{ ๐’†๐’Š๐œฝ } is an
irreducible representation of
The โ€œBridging
Theoremโ€
Th 6.3a.
๐œถ
๐‘น๐œถ .
Proof. ๐‘“: {๐‘…๐›ผ } โ†’ GL(1,C),
๐‘“ ๐‘…๐›ผ = ๐‘’ ๐‘–๐œƒ๐›ผ where ๐‘…๐›ผ ๐œ‘ = ๐œ‘๐‘’ ๐‘–๐œƒ๐›ผ .
Show ๐‘“ is a homomorphism.
By defโ€ฆ
๐‘“(๐‘…๐‘Ž ๐‘…๐‘ ) ๐œ‘ = ๐‘’ ๐‘–๐œƒ๐‘Ž๐‘ ๐œ‘ = ๐‘…๐‘Ž ๐‘…๐‘ ๐œ‘ = ๐‘…๐‘Ž ๐‘’ ๐‘–๐œƒ๐‘ ๐œ‘ = ๐‘’ ๐‘–๐œƒ๐‘Ž ๐‘’ ๐‘–๐œƒ๐‘ ๐œ‘ = ๐‘“(๐‘…๐‘Ž )๐‘“(๐‘…๐‘ )๐œ‘
Since, ๐‘“(๐‘…๐‘Ž ๐‘…๐‘ ) = ๐‘“(๐‘…๐‘Ž )๐‘“(๐‘…๐‘ ), the image set { ๐’†๐’Š๐œฝ๐œถ } is a representation.
Since it is 1-dimensional, it is irreducible.
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
21
The โ€œBridging Theoremโ€:
degenerate case
Suppose H๐œ‘ = E๐œ‘, and that E is n-degenerate.
Let {Rโˆ} be the group of the Hamiltonian H.
Consider the set of eigenfunctions { Ra ๐œ‘ | Raโˆˆ {Rโˆ} } of E.
Def. If { Ra ๐œ‘ | Ra โˆˆ {Rโˆ} } contains all n distinct eigenfunctions of E, then its
eigenfunctions are said to be normal degenerate.
Repeated application of Ra on ๐œ‘ ๏ƒจ complete set of normal degenerate ๐œ‘โ€™s
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
22
The โ€œBridging Theoremโ€:
degenerate case
๏‚ง Suppose {๐‘น๐œถ } is the group of the Hamiltonian H.
๏‚ง Suppose E is an eigenvalue of H with n normal degenerate eigenfunctions
๐‹ = (ฯ†1 , ฯ†2 , โ€ฆ , ฯ†๐‘› ).
๏‚ง For a given symmetry operation ๐‘…๐‘Ž โ€ฆ
Let ฮ“ ๐‘…๐‘Ž be the nxn matrix which satisfies
๐‘…๐‘Ž ๐‹ = ๐‹ ฮ“ ๐‘…๐‘Ž
Th 6.3b. The set of nxn matrices { ๐šช ๐‘น๐œถ } is an n-dimensional
irreducible representation of {๐‘น๐œถ }.
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
23
The โ€œBridging Theoremโ€
Th 6.3b. The set of nxn matrices { ๐šช ๐‘น๐œถ } is an n-dimensional irreducible
representation of {๐‘น๐œถ }.
Proof.
(i) Show that { ๐œž ๐‘น๐œถ } is a representation.
Show ฮ“ R ๐‘Ž R ๐‘ = ฮ“ R ๐‘Ž ฮ“ R ๐‘ .
Recall def. of ๐šช:
๐‘น๐’‚ ๐‹ = ๐‹ ๐šช ๐‘น๐’‚
๐‹ ฮ“ R๐‘Ž R๐‘ = R ๐‘Ž R๐‘ ๐‹ = R ๐‘Ž ๐‹ ฮ“ R๐‘ = ๐‹ ฮ“ R๐‘Ž ฮ“ R๐‘ .
Since the matrices in { ฮ“ R ๐›ผ } are all nxn, { ฮ“ R ๐›ผ } is an n-dimensional representation.
(ii) Show that { ๐œž ๐‘น๐œถ } is irreducible.
(given)
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
24
In Summaryโ€ฆ
Application of
Representation
Theory
Normal degenerate families of eigenfunctions ๐‹
โ€œinteractโ€ with the group of the Hamiltonian {๐‘น๐œถ }
to generate irreducible repโ€™s { ๐šช ๐‘น๐œถ } .
We will use this result to derive Blochโ€™s Th:
๏ƒ  form of eigenfunctions for electrons in a crystal
1. find group of the Hamiltonian {๐‘น๐œถ }
2. already know irreducible repโ€™s { ๐šช ๐‘น๐œถ }
3. decide what eigenfunctions ๐‹ must look like
25
1-D crystal
1-D lattice of positive ions
V(x)
+
a
+
+
+
x
N ions in the unit cell spaced a distance a apart
โ€œBuild crystalโ€ by applying periodic boundary condition ๏ƒ  N discrete symmetries
Now, H is symmetric under any operator ๐‘…๐‘Ž such that
๐‘…๐‘Ž ๐œ‘ ๐‘ฅ = ๐œ‘ ๐‘ฅ + ๐‘Ž , and (๐‘…๐‘Ž )๐‘ = ๐‘…0 = ๐ธ
< ๐‘น๐’‚ > = group of the Hamiltonian
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
26
Blochโ€™s Theorem: 1-D
What are the irreducible representations of < ๐‘…๐‘Ž > ?
Recall: For a cyclic group < ๐‘น๐’‚ > of order Nโ€ฆ
where ๐œ” = ๐‘’ 2๐œ‹๐‘–/๐‘
Table of Irreducible repโ€™s of < ๐‘น๐’‚ >
๐ธ
๐‘…๐‘Ž
ฮ“1
ฮ“2
1
1
1
๐‘…๐‘Ž 2
1
๐œ”
๐œ”2
โ€ฆ
โ€ฆ
โ‹ฎ
ฮ“๐‘
โ‹ฎ
1
๐œ”๐‘โˆ’1
๐œ”๐‘โˆ’2
โ€ฆ
KRISTINA CHANG
โ€ฆ
REPRESENTATION THEORY IN QUANTUM MECHANICS
๐‘…๐‘Ž ๐‘โˆ’1
1
๐œ”๐‘โˆ’1
๐œ”
(๐‘โˆ’1)2
SPRING 2016
27
Blochโ€™s Theorem: 1-D
Recall: (๐‘…๐‘Ž )๐‘› ๐œ‘ ๐‘ฅ = ๐œ‘ ๐‘ฅ + ๐‘›๐‘Ž
What does ๐‹๐’ ๐’™ look like?
Suppose ๐œ‘๐‘› is the eigenfunction which generates { ฮ“๐‘› }.
Then ๐‘…๐‘Ž ๐œ‘๐‘› ๐‘ฅ = ๐œ‘๐‘› ๐‘ฅ ฮ“๐‘› ๐‘…๐‘Ž = ๐œ‘๐‘› ๐‘ฅ ๐œ”๐‘›โˆ’1 . We know ๐‘…๐‘Ž ๐œ‘๐‘› ๐‘ฅ = ๐œ‘๐‘› ๐‘ฅ + ๐‘Ž ,
So,
๐œ‘๐‘› ๐‘ฅ ๐œ”๐‘›โˆ’1 = ๐œ‘๐‘› ๐‘ฅ + ๐‘Ž .
Then,
|๐œ‘๐‘› ๐‘ฅ + ๐‘Ž |2 = |๐œ‘๐‘› ๐‘ฅ ๐œ”๐‘›โˆ’1 |2 = |๐œ‘๐‘› ๐‘ฅ |2
Eq. 6.5
General solution to Eq. 6.5:
๐œ‘๐‘› ๐‘ฅ = ๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ) ๐‘ข๐‘› ๐‘ฅ
Phase function
๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ)
Periodic function ๐‘ข๐‘› ๐‘ฅ = ๐‘ข๐‘› ๐‘ฅ + ๐‘Ž
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
28
Blochโ€™s Theorem: 1-D
๐œ‘๐‘› ๐‘ฅ = ๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ) ๐‘ข๐‘› ๐‘ฅ
General solution:
Now apply boundary conditions to ๐œ‘๐‘› ๐‘ฅ โ€ฆ
๐‘…๐‘Ž ๐‘š ๐œ‘๐‘› ๐‘ฅ
= ๐œ‘๐‘› ๐‘ฅ + ๐‘š๐‘Ž = ๐œ‘๐‘› ๐‘ฅ ๐œ” ๐‘š(๐‘›โˆ’1) ,
โ†’ ๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ+๐‘š๐‘Ž) ๐‘ข๐‘› ๐‘ฅ + ๐‘š๐‘Ž = ๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ) ๐‘ข๐‘› ๐‘ฅ ๐œ” ๐‘š(๐‘›โˆ’1)
โ†’ ๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ+๐‘š๐‘Ž) ๐‘ข๐‘› ๐‘ฅ = ๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ) ๐‘ข๐‘› ๐‘ฅ ๐œ” ๐‘š(๐‘›โˆ’1)
โ†’ ๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ+๐‘š๐‘Ž) = ๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ) ๐œ” ๐‘š(๐‘›โˆ’1)
โ†’
๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ+๐‘š๐‘Ž)
=
๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ)
๐‘’
2๐œ‹๐‘–
๐‘
โ†’ ๐œฝ๐’ ๐’™ + ๐’Ž๐’‚ = ๐œฝ๐’ ๐’™ +
KRISTINA CHANG
๐‘š(๐‘›โˆ’1)
๐Ÿ๐…
๐‘ต
๐’Ž(๐’ โˆ’ ๐Ÿ)
REPRESENTATION THEORY IN QUANTUM MECHANICS
condition on ๐œฝ๐’ (๐’™)
SPRING 2016
29
Blochโ€™s Theorem: 1-D
Given: ๐œƒ๐‘› ๐‘ฅ = ๐ต + ๐‘˜๐‘› ๐‘ฅ ,
๐‘˜๐‘› =
2๐œ‹
๐‘๐‘Ž
๐‘› โˆ’ 1 , some constant B
Substitute ๐œƒ๐‘› ๐‘ฅ into general solution for ๐œ‘๐‘› ๐‘ฅ :
๐œ‘๐‘› ๐‘ฅ = ๐‘’ ๐‘–๐œƒ๐‘› (๐‘ฅ) ๐‘ข๐‘› ๐‘ฅ
= ๐‘’ ๐‘–(๐ต+๐‘˜๐‘› ๐‘ฅ) ๐‘ข๐‘› ๐‘ฅ
= ๐‘’ ๐‘–๐‘˜๐‘› ๐‘ฅ ๐‘ข๐‘› ๐‘ฅ
Bloch functions
๐‹๐’ ๐’™ = ๐’†๐’Š๐’Œ๐’ ๐’™ ๐’–๐’ ๐’™
The eigenstates of a 1-D crystal lattice (periodic function modulated by a plane wave)
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
30
Representation Theory:
We showed that symmetry groups can be represented by
matrices.
Cyclic groups have special sets of irreducible representations.
Summary
Quantum Mechanics:
Hamiltonian belong to symmetry groups.
We can map eigenfunctions (wavefunctions) to irreducible
representations in the Hamiltonian.
This helps us to solve for eigenfunctions (wavefunctions) of a
1-D crystal with only a knowledge of Hamiltonian symmetry.
31
Acknowledgements
Professor Naimi
Friends
Faculty
Professor Buckmire
All of you!
References
[1] Vedensky, Dimitri. โ€œGroup Theory: Course Notesโ€ (2001).
http://www.cmth.ph.ic.ac.uk/people/d.vvedensky/courses.html
[2] Cotton, Albert. Chemical Applications of Group Theory (2003). John Wiley and Sons, Inc.
[3] Saracino, Dan. Abstract Algebra: A First Introduction (2008). Waveland Pr, Inc.
KRISTINA CHANG
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
33
Blochโ€™s Theorem: 1-D
What does ๐œƒ๐‘› (๐‘ฅ) look like? We knowโ€ฆ
๐œฝ๐’ ๐’™ + ๐’Ž๐’‚ = ๐œฝ๐’ ๐’™ +
Cute trick:
๐Ÿ๐…
๐‘ต
๐’Ž ๐’โˆ’๐Ÿ
Eq. 6.10
If we hold x and n constant, ๐œฝ๐’ looks like a linear function of m.
So ๐œฝ๐’ is a linear function of am + ๐‘ฅ.
So we can write
๐œฝ๐’ ๐’™ = ๐‘ฉ + ๐‘จ๐’™
๐œƒ๐‘› ๐‘ฅ = ๐ด am + ๐‘ฅ + ๐ต
๏ƒ  Substitute into Eq. 6.10:
๐ต + ๐ด ๐‘ฅ + ๐‘š๐‘Ž = ๐ต + ๐ด๐‘ฅ +
Solve for A:
KRISTINA CHANG
๐ด=
2๐œ‹
๐‘๐‘Ž
๐‘›โˆ’1
2๐œ‹
๐‘š ๐‘›โˆ’1
๐‘
= ๐‘˜๐‘›
REPRESENTATION THEORY IN QUANTUM MECHANICS
SPRING 2016
34