Download Simulating Mantle Convection and Seismic Anisotropy with Data

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of geology wikipedia , lookup

Age of the Earth wikipedia , lookup

Global Energy and Water Cycle Experiment wikipedia , lookup

Geology wikipedia , lookup

Post-glacial rebound wikipedia , lookup

Seismic inversion wikipedia , lookup

Magnetotellurics wikipedia , lookup

Seismic anisotropy wikipedia , lookup

Oceanic trench wikipedia , lookup

Plate tectonics wikipedia , lookup

Geophysics wikipedia , lookup

Mantle plume wikipedia , lookup

Earthscope wikipedia , lookup

Large igneous province wikipedia , lookup

Transcript
Simulating Mantle Convection and Seismic
Anisotropy with Data Assimilation
Project PI: Lijun Liu, UIUC
Presenter: Jiashun Hu
Collaborator: Manuele Faccenda, University of Padua, Italy
Group members: Quan Zhou, Ching Chang
NCSA team: Ryan Mokos, Bill Gropp, Darren Adams, Yifeng Cui
Geologist’s view on plate subduction
CourtesytoandinmemoryofProf.PaulHeller
Whyitmatters– tomodelmantleconvection
• Howtheearthworks
• Naturalhazards
Fromthefilm
SanAndreas
(Braun2010)
TherealEarthismuch
morecomplex.
fromUSGS
Keychallenges
• Cleanupboundaryconditions
• Earth’shistoryisverycomplex.Wehavelimitedconstraints
onthemotionsandtheagesoftheplates.
• Largeviscositycontrast
• Significantlyslowdowntheconvergenceofthesolver
• Requireshigherresolutiontoresolve
• Unknownpropertiesandprocesses
• Suchasthegenerationandbehaviorofmagmainthe
mantlewedge,andthepropertiesofthesuperplumesin
deepmantle
Potentialproblemswithexisting
models
• Mostearliermodelsarein2D
A
• Recent3Dmodelsusedidealized
boundaryconditions
[vanHunen
etal.,2002]
B
[vanHunen
etal.,2000]
C
[Manea et
al.,2012]
(Taramon et al., G-cubed, 2015)
5
Potentialproblemswithexisting
models
• Recent3Dmodelsusedfixedslabgeometry
(Flament et al.,
EPSL, 2015)
6
ModelingS.Americansubduction
history
Wetrytodevelopamodelthatisconsistentwithallavailable
geophysicalandtectonicconstraints:
• Theknownsubductionhistory(platemotion&seafloorage)
• Dynamicallyevolvinginsteadofprescribedslabs
• GoverningEquations
• Assumethemantleis an incompressible fluid, which satisfies
theBoussinesq approximation
7
WhyBlueWaters
• CitcomS hasaverygoodscalability,up
to~10,000CPUsonBlueWaters.
Machine time (second)
1000
• BlueWatersiscompatiblewiththe
softwares weuse,includingCitcomS,
DrexS andFSTRACK
100
10
129×257×257
Blue Waters
513×1025×1025
Stampede
1
0
10
1
10
2
10
CPU number
3
10
4
10
• Largercapacityleadstolarger
allocationandshorterwaitingtime.
Data Assimilation
Seafloor age, plate motion, plate geometry,cratons
9
ViscositystructureofS.Americanmodel
4ordersof
magnitude
incontrast
(Huetal.,EPSL, 2016)
10
PredictedSouthAmericansubduction since 100 Ma
Modelsize:8.6mgrids
Maximumresolution:
27kmx20kmx8km
1024CPUs
~150hours
(Huetal.,EPSL, 2016)
11
Accomplishments
Thepowerofdataassimilation:
Fittinguppermantleslab
geometry
12
Fittinglowermantletomography
Themodelfitstothetomographyimages
wellto1000kmdepth,especiallyinthe
northernpartofSouthAmericathathas
abetterseismiccoveragethanthe
southernpart.
13
Slabtearvs.intra-slabseismicity
(Hu&Liu,EPSL,2016)
Newinterpretationofflatslabsubduction
(Hu&Liu,EPSL,2016)
Late Cenozoic Andean Flare-up
ThecentralAndesareunusualfortheabundanceoffelsicignimbritesand
theirdistributionisshownseparatelyfromtheintermediatetomafic
volcaniccenters.
Volcaniczoneissignificantlybroadenedsince~30Ma.
Thrumbull etal.,2006
Haschke etal.,2002
16
Geologicimplication:Slabdynamics&Andeanevolution
N
The30-Maslabtear
correlateswiththe
Andeanignimbriteflareupbothinspaceandin
time.
Newimplicationson
Andeanshortening&
upliftaswell?
33Ma
N
5Ma
40Ma
15Ma
30Ma
N
17
Predictingseismicanisotropy
• Calculateseismicanisotropy(LPO)byintegratingthe
mantle flowfield
• Integrating the anisotropy in the upper mantle to
generate synthetic SWS
Conclusions
• Supercomputers,suchasBlueWaters,makeitfeasibletorun
mantle-convectionmodelsin3Dwithatimescaleofhundredsof
millionyears.
• Theimplementationofdataassimilationmethodisnecessaryin
ordertodirectlycompareobservationwithprediction.
• Challengesremaininfastsolvingfluiddynamicswithcomplex
rheology,suchasnon-Newtonianrheologyandextremelyvarying
rheology.
19
Publications
• Hu,J.,Liu,L.,Hermosillo,A.andZhou,Q.,2016.SimulationoflateCenozoic
SouthAmericanflat-slabsubductionusinggeodynamicmodelswithdata
assimilation. EarthandPlanetaryScienceLetters, 438,pp.1-13.
• Hu,J.andLiu,L.,2016.Abnormalseismologicalandmagmaticprocesses
controlledbythetearingSouthAmericanflatslabs. EarthandPlanetary
ScienceLetters, 450,pp.40-51.
• Hu,J.,Faccenda,M.andLiu,L.,2017.Subduction-controlledmantleflow
andseismicanisotropyinSouthAmerica. EarthandPlanetaryScience
Letters, 470,pp.13-24.
Modelsize:51.5mgrids
On-goingResearch
Maximumresolution:
27kmx27kmx8km
~10,000CPUs
~200hours
Featuredresearchinourgroup
Zhouetal.,
submitted
Featuredresearchinourgroup
Observation
125˚W
60˚N
20˚N
70Ma
ModelI(Dyn.Topo.only)
65˚W
subsidence
Topography(m)
(Liuetal.2008;Smithetal.1994)
-2000
0
2000
Changetal.,inprep.