* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Renormalization Group Seminar Exact solution to the Ising model
Relativistic quantum mechanics wikipedia , lookup
Renormalization wikipedia , lookup
Perturbation theory (quantum mechanics) wikipedia , lookup
Dirac bracket wikipedia , lookup
Tight binding wikipedia , lookup
Scalar field theory wikipedia , lookup
Renormalization group wikipedia , lookup
Path integral formulation wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Canonical quantization wikipedia , lookup
Renormalization Group Seminar Exact solution to the Ising model Alois Dirnaichner 12.05.2009 Exact Solution to the Ising-Model Outline: Starting point: Hamiltonian derived in previous lecture Transformation to free fermion-style Hamiltonian Diagonalization Partition sum, free energy and specific heat Starting point H =∑ 3 n− ∑ 1 n 1 n1 n n describing one-dimensional quantum chain in a transverse magnetic field with periodic boundary conditions Remarks: Unitary transformation 1 − 3 ; 3 1 1 n=1×...× 1×...×1 Transformation I 1 ±n ≡ 1 n±i 2 n 2 − satisfying{ n , n }=1 [ n , −m ]=0 ; n≠m ⇒ H =∑ 1−2 −n n − ∑ n −n n1 −n1 n n and then n−1 n−1 c n ≡expi ∑ l=1 l − l − n and c ≡ exp−i ∑ l −l † n n l=1 † {c n , cm }=nm to arrive at Fermion operators with Motivation: {n , expi n −n }=0 n n−1 exp ∑ l=1 ± 2 and =0 Transformation II ⇒ H =∑ 2cn c n − ∑ c n−c n c n1 c n1 † n † † (Free fermion Hamiltonian) n in momentum space:a = k † N 1 2 2N ikn e c n ; k=0,± , ... ,± ∑ 2N1 2N1 2N1 n=−N † † † ⇒ H = ∑ 21−cos k a k a k a−k a−k 2i ∑ sin k a k a−k a k a −k k 0 after symmetrization. k 0 Diagonalization construct explicitly the matrix in Fock space calculate the eigenvalues: a=−2i sin k ; b=1− cos k 0/1 =2b 2/3 k =2 b±2 12 −2 cos k (twice) Partition sum and free energy The partition sum yields Z =tr e − H =∑ exp− N ∫ dq 3 q N TD limit 3 k =1− cos k − 1 −2 cos k 2 Thus we get for the free energy density F 1 1 ˙ =− ln Z = f =− ∫ dk 1−2 cos k 2 const. 0 N N 0 Specific heat We analyze the free energy integral for small values of k. To do so, we cut the integral in two parts. 0 0 k2 cos k ≈1− 2 ∫ ∫ ∫ When we integrate this and identify t≡∣1−∣~ T −T c Tc we get 2 −∂ f =−∫ dk t 21−t k ~−t ln∣t∣ ⇒ c= 2 f ~−ln∣t∣ ∂t 0 2 2 2 Free energy, entropy Specific heat