* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Physics 106P: Lecture 23 Notes
Rolling resistance wikipedia , lookup
Rotating locomotion in living systems wikipedia , lookup
Jerk (physics) wikipedia , lookup
Coriolis force wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Classical mechanics wikipedia , lookup
Analytical mechanics wikipedia , lookup
Brownian motion wikipedia , lookup
Inertial frame of reference wikipedia , lookup
Fictitious force wikipedia , lookup
Renormalization group wikipedia , lookup
Classical central-force problem wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Seismometer wikipedia , lookup
Hunting oscillation wikipedia , lookup
Centripetal force wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Review: Direction & The Right Hand Rule y To figure out in which direction the rotation vector points, curl the fingers of your right hand the same way the object turns, and your thumb will point in the direction of the rotation vector! x z y We normally pick the z-axis to be the rotation axis as shown. = z = z = z x z For simplicity we omit the subscripts unless explicitly needed. Physics 131: Rotational Motion III Review: Torque and Angular Acceleration NET = I This is the rotational analogue of FNET = ma Torque is the rotational analogue of force: The amount of “twist” provided by a force. Moment of inertia I is the rotational analogue of mass If I is big, more torque is required to achieve a given angular acceleration. Physics 131: Rotational Motion III Rotations Two wheels can rotate freely about fixed axles through their centers. The wheels have the same mass, but one has twice the radius of the other. Forces F1 and F2 are applied as shown. What is F2 / F1 if the angular acceleration of the wheels is the same? (a) 1 F2 (b) 2 (c) 4 F1 Physics 131: Rotational Motion III Solution We know but I FR so FR mR 2 F mR Since R2 = 2 R1 I mR 2 and F2 mR2 R2 F1 mR1 R1 F2 2 F1 F2 F1 Physics 131: Rotational Motion III Review: Work & Energy The work done by a torque acting through a displacement is given by: W The power provided by a constant torque is therefore given by: P dW d dt dt Physics 131: Rotational Motion III Falling weight & pulley A mass m is hung by a string that is wrapped around a pulley of radius R attached to a heavy flywheel. The moment of inertia of the pulley + flywheel is I. The string does not slip on the pulley. I R T Starting at rest, how long does it take for the mass to fall a distance L. m a mg L Physics 131: Rotational Motion III Falling weight & pulley... For the hanging mass use F = ma mg - T = ma For the pulley + flywheel use = I = TR = I Realize that a = R R a TR I R Now solve for a using the above equations. mR a g 2 mR I 2 I T m a mg L Physics 131: Rotational Motion III Falling weight & pulley... Using 1-D kinematics (Lecture 1) we can solve for the time required for the weight to fall a distance L: I R 1 2 L at 2 where t 2L a mR 2 a g 2 mR I T m a mg L Physics 131: Rotational Motion III Rotation around a moving axis. A string is wound around a puck (disk) of mass M and radius R. The puck is initially lying at rest on a frictionless horizontal surface. The string is pulled with a force F and does not slip as it unwinds. What length of string L has unwound after the puck has moved a distance D? M R F Top view Physics 131: Rotational Motion III Rotation around a moving axis... A The CM moves according to F = MA The distance moved by the CM is thus D F M 1 2 F 2 At t 2 2M RF 2F = = I 1 MR MR 2 2 The disk will rotate about its CM according to = I = So the angular displacement is 1 2 F 2 t t 2 MR 1 I MR 2 2 M A R F Physics 131: Rotational Motion III Rotation around a moving axis... So we know both the distance moved by the CM and the angle of rotation about the CM as a function of time: D F 2 t 2M Divide (b) by (a): (a) 2 D R F 2 t MR R 2 D (b) The length of string pulled out is L = R: L 2D F F D L Physics 131: Rotational Motion III Comments on CM acceleration: We just used = I for rotation about an axis through the CM even though the CM was accelerating! The CM is not an inertial reference frame! Is this OK?? (After all, we can only use F = ma in an inertial reference frame). YES! We can always write = I for an axis through the CM. This is true even if the CM is accelerating. We will prove this when we discuss angular momentum! M A R F Physics 131: Rotational Motion III Rolling An object with mass M, radius R, and moment of inertia I rolls without slipping down a plane inclined at an angle with respect to horizontal. What is its acceleration? Consider CM motion and rotation about the CM separately when solving this problem (like we did with the last problem)... I M R Physics 131: Rotational Motion III Rolling... Static friction f causes rolling. It is an unknown, so we must solve for it. First consider the free body diagram of the object and use FNET = MACM : In the x direction Mg sin - f = MA M Now consider rotation about the CM and use = I realizing that = Rf and A = R Rf I A R f I A R f Mg R2 Physics 131: Rotational Motion III Rolling... Mg sin - f = MA We have two equations: We can combine these to eliminate f: f I A R2 MR 2 sin A=g MR 2 + I I A For a sphere: MR 2 sin A=g 2 2 MR + MR 2 5 5 = gsin 7 M R Physics 131: Rotational Motion III Rotations Two uniform cylinders are machined out of solid aluminum. One has twice the radius of the other. If both are placed at the top of the same ramp and released, which is moving faster at the bottom? (a) bigger one (b) smaller one (c) same Physics 131: Rotational Motion III Solution Consider one of them. Say it has radius R, mass M and falls a height H. Energy conservation: - DU = DK but 1 I MR 2 2 and MgH 1 1 I 2 MV 2 2 2 V R 2 1 1 1 2 V MgH MR 2 MV 2 R 2 2 2 MgH H 1 1 3 MV 2 MV 2 MV 2 4 2 4 Physics 131: Rotational Motion III Solution So: MgH 3 MV 2 4 3 gH V 2 4 V 4 gH 3 So, (c) does not depend on size, as long as the shape is the same!! H Physics 131: Rotational Motion III Sliding to Rolling A bowling ball of mass M and radius R is thrown with initial velocity v0. It is initially not rotating. After sliding with kinetic friction along the lane for a distance D it finally rolls without slipping and has a new velocity vf. The coefficient of kinetic friction between the ball and the lane is . What is the final velocity, vf, of the ball? vf= R v0 f = Mg D Physics 131: Rotational Motion III Sliding to Rolling... While sliding, the force of friction will accelerate the ball in the -x direction: F = -Mg = Ma so a = -g The speed of the ball is therefore v = v0 - gt (a) Friction also provides a torque about the CM of the ball. Using = I and remembering that I = 2/5MR2 for a solid sphere about an axis through its CM: 2 = MgR = MR 2 5 x v f= R 5g = 2R = 0 + t = 5 g t (b) 2R v0 f = Mg D Physics 131: Rotational Motion III Sliding to Rolling... x v v 0 gt (a) = 5g t (b) 2R We have two equations: Using (b) we can solve for t as a function of Plugging this into (a) and using vf = R (the condition for rolling without slipping): 5 Doesn’t depend vf v0 7 on , M, g!! vf= R t 2 R 5 g v0 f = Mg D Physics 131: Rotational Motion III Rotations A bowling ball (uniform solid sphere) rolls along the floor without slipping. What is the ratio of its rotational kinetic energy to its translational kinetic energy? (a) 1 5 (b) 2 5 (c) 1 2 Recall that I 2 MR 2 for a solid sphere about 5 an axis through its CM: Physics 131: Rotational Motion III Solution The total kinetic energy is partly due to rotation and partly due to translation (CM motion). K= 1 1 I 2 MV 2 2 2 rotational translational K K Physics 131: Rotational Motion III Solution K= 1 1 I 2 MV 2 2 2 Since it rolls without slipping: rotational Translational K K K ROT KTRANS V R 2 1 2 2 2 V I MR 2 5 R 2 2 2 1 2 5 MV MV 2 Physics 131: Rotational Motion III Atwoods Machine with Massive Pulley: y A pair of masses are hung over a massive disk-shaped pulley as shown. Find the acceleration of the blocks. For the hanging masses use F = ma -m1g + T1 = -m1a -m2g + T2 = m2a a I For the pulley use = I R a 1 T1R - T2R I MRa R 2 (Since I 1 MR 2 for a disk) 2 x M R T2 T1 a m2 m1 a m1g m2g Physics 131: Rotational Motion III Atwoods Machine with Massive Pulley... y We have three equations and three unknowns (T1, T2, a). Solve for a. x -m1g + T1 = -m1a (1) -m2g + T2 = m2a (2) T1 - T2 1 Ma 2 (3) m1 m 2 a g m1 m 2 M 2 M R T2 T1 a m2 m1 a m1g m2g Physics 131: Rotational Motion III Recap of today’s lecture Review Many body dynamics Weight and massive pulley Rolling and sliding examples Rotation around a moving axis: Puck on ice Rolling down an incline Bowling ball: sliding to rolling Atwood’s Machine with a massive pulley Look at textbook problems Chapter 11: # 36, 37, 53, 55, 57 Physics 131: Rotational Motion III